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ABSTRACT

The Columbia River Basalts, erupting 17-6 Ma and covering 

~175,000 km2 in the U.S. Pacific Northwest (Tolan et al., 1989), 

represent the most recent flood basalt event on Earth.  The well-

mapped, large, continuous areal extent of most early flows allows 

for detailed flow interface analysis.  Significant crustal uplift 

preceding flood basalt eruption, a feature typically associated 

with impingement of a rising mantle plume head (Farnetani and 

Richards, 1994), was not present here.  Rather, mild pre-eruptive 

subsidence followed by syn-eruptive and post-eruptive uplift of 

300 m, on average, occurred over a broad, 200 km diameter 

region to the south and west of the dike swarms that produced 

90% of these basalts over 1.5 million years, with extreme uplift 

present in several granite-cored mountains.  In addition, from a 

conventional, fixed deep mantle plume source reference frame 

for Yellowstone, North American plate motion predicts a hotspot 

location at 17 Ma that is 400 km south of this area.  Though some 

volcanism (e.g. Steens and Malheur Gorge basalt) was present 

here at that time, the majority of flood basalt volcanism (e.g. 

Columbia River Basalts) occurred nearly 400 km away in 

northeast Oregon, southeast Washington, and western Idaho.

With these simple, well constrained contradictions to the standard 

plume head hypothesis for hot spot initiation in mind, we 

deployed the first seismic array focused on imaging the upper 

mantle in northeast Oregon.  Using ~600 teleseismic P-wave 

arrivals collected over 5 months at the six-station array of 

broadband, three component seismometers, we find high velocity 

mantle, +4% Vp relative to IASPEI91, beneath northeast Oregon 

at 70-150 km depth and interpret this anomaly as the melt-

depleted mantle source region for the Columbia River Basalts.  

Assuming an experimentally based density change for depletion 

of garnet peridotite, this volume of residuum could provide 

sufficient isostatic support for the total volume of crustal uplift in 

the broad region.  Yet, when considering the local areas 

possessing excessive uplift (i.e., the Wallowa, Cuddy, and 

Elkhorn Mountains) within this broadly uplifted region, it is 

apparent that a different mechanism for uplift is necessary.  

Mechanical foundering of the lithosphere would allow for large-

scale mantle upwelling and decompression melting to occur prior 

to uplift (Elkins-Tanton and Hager, 2000).  Furthermore, the 

removal of compositionally dense, eclogitic roots to the granitic 

plutons would decrease density locally, allowing for anomalous 

areas of uplift.  Therefore, we propose that lithospheric 

delamination provides a better explanation for uplift history and 

Columbia River flood basalt volcanism than a standard mantle 

plume.
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(A) Digital elevation map showing the overlapping distribution of exposed Grande 

Ronde (R1, N1, R2, and N2) and Imnaha magnetostratigraphic interfaces.     
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(C) Schematic plot of the Wallowa Mountains uplift history (dark line) and a hypothetical area affected by a 

thermal plume (grey line). Wallowa Mountain uplift history is controlled at three times. Pre-eruptive 

subsidence, inferred from ponding of early Imnaha lava flows in basins, is interpreted as the initiation of 

delamination. We calculated ~300 m of syn-eruptive uplift in this area over the 1 m.y. duration of Grande 

Ronde eruption. This is followed by rapid uplift of the Wallowa Mountains 3-4 m.y. after initial Imnaha 

eruption, evidenced by the development of structures bounding the Wallowa Mountains14, and current 

topographic relief of the composite surface shown in (b). Note that the hypothetical uplift curve for a thermal 

plume can vary significantly in magnitude, we have chosen a representative amount of uplift predicted from 

CRBG magmatism.
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Lithospheric delamination is likely the principle cause of mid-

Miocene uplift and flood basalt volcanism in northeast Oregon 

A rising mantle plume head is not required to produce the large 

volume of flood basalts in this region, but may play a secondary role.

Conclusions
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(B) Composite surface for GR uplift.  This surface was made by vertically shifting the individual interfaces using 

published flow thicknesses (Camp, 1981), smoothing the resulting surface with a mild low-pass filter, and removing 

the effects of erosional unloading by deconvolving the point load response of an elastic plate (Lambeck, 1988; 

Anderson, 1994), assuming total coverage by the GR lavas and an elastic thickness of 5 km, similar to other estimates 

from this area (Lowry and Smith, 1995).  The absolute elevation is referenced to a hinge line (black line) that separates 

the uplifted Blue Mountains from the down-dropped Pasco Basin immediately NW of the Blue Mountains.
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Future Work
Although this study incorporates exciting new seismic data and uplift 

analysis, there remain several other possibilities for corroboration or 

disproval of our proposed model: 

Geochemical mixing models that account for the addition of 

plutonic root material into the melt system

Geodynamical modeling of the migration velocity and subsequent 

thermal potential of a plume at distances up to 500 km from 

impingement 

High resolution seismic imaging at greater depth to locate the 

delaminated lithosphere which may still be coherent
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