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Testing the mantle’s physical background structure

Model interpretation
Usual assumption: tomographic anomalies
are relative to an average for whole mantle
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[ Hypothesis test against data \
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Possible solutions: (a) larger uncertainties in the EOS - 9/0T? d/0TdP? lower mantle extrapolations?
K (b) deviations from this physical model - chemical variability? significant 3-D structure? j

Motivation

Interpretations of tomographic or other data derived models do not allow full assessment of uncertainties

Therefore, tests directly against seismic and other data are required to accept or
Two first steps towards such an approach are illustrated here

reject hypotheses for the physical state of the mantle.

Synthetic seismic structures for thermal whole mantle plumes
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(8) rising almost adiabatically at speeds that are about 0.1-1m /yr 0 0
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(5) very slow to initiate (> 0.4 b.y.) without external forcing (e.g. pushing by subducted material), for e 435km
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(6) have buoyancy fluxes of at least 3 Mg/s. A diffusively growing thermal boundary layer above the CMB
can support < 10 such high flux plumes. A - basic model C1 - stronger on/dT in UM
(7) difficult to bend in the lower mantle, but easy to deflect in the upper mantle B - hotter AT, G2 - stronger dn/dT in UM/LM
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The dynamically predicted properties agree with: Predicted seismic velocity and | |
attenuation for a characteristic
(1,2) tomographically imaged plume width in upper and lower mantle whole mantle thermal plume
(3) seismic V anomaly amplitudes expected for adiabatically rising plumes with low AT as gfu‘:“c‘j’el' fort two lposgéb'e a4l 0/ 0~
inferred from hotspots, and associated seismic Q anomalies st;omr? els, strongly (Q6) and less - -
N X . . gly (Q4) T-dependent.
(4) seismic indications for dense chemical heterogeneity in deep mantle, which may be able . -
to stabilize part of the deep TBL resulting in low and variable plume AT ] - - : ‘
(5) concentration of hotspots away from subduction anomalies in the deep mantle
(6) the small number of hotspots that have a deep seismic anomaly (although sublithospheric
B needs to be moder'ate?d by a dense component and/or plume lithosphere interaction Although seismic images agree with many of the characteristics of
@ (;n;:ﬁ':gﬂ;;%%‘;e;;g; -a)ge rends thermal whole mantle plumes, additional chemical complexity seems
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likely => Need thermo-chemical hypothesis tests
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