

Οι	utline
\triangleright	Data and tools
۶	The way of scientific thinking
\triangleright	Origin of magmas
۶	Evolution of magmas
	Classification of the volcanic rocks in the CPR; temporal and spatial distribution
\triangleright	Silicic volcanism
۶	Calc-alkaline volcanism
۶	Potassic-ultrapotassic volcanism
۶	Alkaline sodic volcanism
≻	Perspectives
gi: Neog	ene-Quaternary magmatism of the Carpathian-Pannonian region Eötvös Lecture Series - slide 2/114

Data, tools	
observations.	data
	Sample description locality SiO2 TIO2 A2O3 Fe2O3 Mno MgO N3 pumice clast Mészhegy 74.06 0.21 13.76 1.92 0.04 0.33 TB-1 pumice Túrbucka 71.81 0.17 13.11 1.62 0.03 0.44 N39 pumice clast Xacs 74.54 0.14 14.41 2.5 0.03 0.24 D-1 pumice Demjén, ba 69.3 0.19 12.85 1.47 0.03 0.41
Ning Mgendight Beal Sold addr Webry Selector Webry Selector Webry Selector Webry Selector Webry Selector Sold addr Sold addr Webry Selector Sold addr Sold addr Sold addr Webry Selector Sold addr Sold addr S	
Sz. Harangi: Neogene-Quaternary magmatism of the Carpathian-Pannoni	an region Eötvös Lecture Series - slide 4/114

\geqslant	Data and tools
⊳	The way of scientific thinking
\succ	Origin of magmas
\succ	Evolution of magmas
	Classification of the volcanic rocks in the CPR; temporal and spatial distribution
	Silicic volcanism
	Calc-alkaline volcanism
\geq	Potassic-ultrapotassic volcanism
\succ	Alkaline sodic volcanism
\geq	Perspectives

The way of scientific thinking	_	
	Example – 2: what do isotope deep mantle pro	ratios tell us about the cesses?
 Speculations 		
Hypothesis	^{is} further corroborated by Pb isotope ratios of clinopyroxenes (Rosenbaum et al. 1997). <u>In Fig. 8a</u> <u>a mixing between depleted mantle with unradio</u> plume-type mantle (HIMU) with more radiogenic	btained on carefully leached <u>b the mantle xenoliths indicate</u> genic Pb compositions and a Pb. The latter component may
• Modell	relate to the upwelling of the asthenosphere during 1995). However, some xenoliths have high ratio	g Tertiary, times (Hoernle et al. ios of Pb/ ²⁰⁴ Pb at a given
Paradigma	(Fig. 8a, b) the asthenospheric component appear indicating that it may be in itself a mixture between	s to lie parallel with the NHRL, en the depleted mantle (UMM)
• Dogma	and HIMU mantle (with extremely high ratio signature (high 238 U/ 204 Pb mantle end-member) type, rather than a normal asthenospheric (MC influence of this signature is also discernible in	s of ^{D/OP} Pb). <u>The HIMU</u> may be indicative of a plume- DRB-type) component. As the n the Tertiary alkali basalt of
	Embey-Isztin et al. 2	2001; Acta Geologica Hungarica
Se Harani: Noocoo Oustoriaru magna	Comment: Mantle end-members are des HIMU isotopic component does not ec of a plume!	scriptive terms! qual with the existence
on narangi noogone quaternary magina	aom er me ea parman i anneman region	Lottoo Lostato Oches - shue 10/114

0	utline
	Data and tools
≻	The way of scientific thinking
۶	Origin of magmas
\geqslant	Evolution of magmas
	Classification of the volcanic rocks in the CPR; temporal and spatial distribution
	Silicic volcanism
	Calc-alkaline volcanism
\geqslant	Potassic-ultrapotassic volcanism
	Alkaline sodic volcanism

\geqslant	Data and tools
\geqslant	The way of scientific thinking
\geqslant	Origin of magmas
\geqslant	Evolution of magmas
	Classification of the volcanic rocks in the CPR; temporal and spatia distribution
۶	Silicic volcanism
\triangleright	Calc-alkaline volcanism
	Potassic-ultrapotassic volcanism
≻	Alkaline sodic volcanism
\triangleright	Perspectives

\geq	Data and tools
	The way of scientific thinking
	Origin of magmas
	Evolution of magmas
	Classification of the volcanic rocks in the CPR; temporal and spatial distribution
	Silicic volcanism
\geqslant	Calc-alkaline volcanism
۶	Potassic-ultrapotassic volcanism
\geqslant	Alkaline sodic volcanism
\geqslant	Perspectives

Alkaline sodic volcanism

- Petrology:
 - > Mostly alkaline mafic rocks: nephelinites to trachybasalts
 - > Sporadic basaltic trachyandesite differentiated rocks
 - > Single alkaline trachyte volcano (buried)
 - > Mostly olivine-phyric mafic rocks
- Age:
 - > Sporadic eruptions at 11-12 Ma

Sz. Harangi: Neogene-Quaternary magmatism of the Carpathian-Pannonian region...

- > Main phase: 2-5 Ma
- > Last eruptions: 100-500 ka
- Occurrences:
 - > Basalt volcanic fields at the western and northern margins
 - Single basalt volcanoes and a small volcanic field at the southeastern margin

 Alkaline sodic volcanism

 Origin of the basalts

 • Extension-related?

 • Plume-related?

 • Fluid-streaming from the Transitional Zone?

Estimation of the Carpathian-Pannonian region...
Estimation of the Carpathian-Pannonian region...

Eötvös Lecture Series - slide 93/114

>	The way of scientific thinking
~	Origin of magmas
	Classification of the volcanic rocks in the CPR; temporal and spatial distribution
\succ	Silicic volcanism
\succ	Calc-alkaline volcanism
≻	Potassic-ultrapotassic volcanism
\triangleright	Alkaline sodic volcanism
۶	Perspectives

Further reading - 1 Balla, Z., 1981. Neogene Volcanism of the Carpatho-Pannonian Region. Earth Evol. Sci., 3-4: 240-248. Bleahu, M., Boccaletti, M., Manetti, P. and Peltz, S., 1973. The Carpathian arc: A continental arc displaying the features of an "island arc". Journal of Geophysical Research, 76: 5025-5032. Boccaletti, M., Manetti, P., Peccerillo, A. and Peltz, S., 1973. Young volcanism in the Calimani-Harghita mountains (East Carpathians): Evidence of a paleoseismic zone. Technophysics, 19(4): 299-313. Chalot-Prat, F. and Girbacea, R., 2000. Partial delamination of continental mantle lithosphere, uplift-related crust-mantle decoupling, volcanism and basin formation: a new model for the Pliocene-Quaternary evolution of the southern East-Carpathians, Romania. Tectonophysics, 327(1-2): 83-107. Cvetkovic, V., Prelevic, D., Downes, H., Jovanovic, M., Vaselli, O. and Pecskay, Z., 2004. Origin and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia (central Balkan Peninsula). Lithos, 73(3-4): 161-186. Dobosi, G., Fodor, R.V. and Goldberg, S.A., 1995. Late-Cenozoic alkali basalt magmatism in Northern Hungary and Slovakia: petrology, source compositions and relationship to tectonics. In: H. Downes and O. Vaselli (Editors), Neogene and related magmatism in the Carpatho-Pannonian Region. Acta Vulcanologica, pp. 199-207. Downes, H., Pantó, G., Póka, T., Mattey, D. and Greenwood, B., 1995. Calc-alkaline volcanics of the Inner Carpathian arc, Northern Hungary: new geochemical and oxygen isotopic results. In: H. Downes and O. Vaselli (Editors), Neogene and related magmatism in the Carpatho-Pannonian Region. Acta Vulcanologica, pp. 29-41. Downes, H., Seghedi, I., Szakacs, A., Dobosi, G., James, D.E., Vaselli, O., Rigby, I.J., Ingram, G.A., Rex, D. and Pecskay, Z., 1995. Petrology and geochemistry of late Tertiary/Quatemary matic alkaline volcanism in Romania. Lithos, 35(1-2): 65-81. Embey-Isztin, A., Downes, H., James, D.E., Upton, B.G.J., Dobosi, G., Ingram, G.A., Harmon, R.S. and Scharbert, H.G., 1993. The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. Journal of Petrology, 34: 317-343. Embey-Isztin, A. and Dobosi, G., 1995. Mantle source characteristics for Micene-Pleistocene alkali basalts, Carpathian-Pannonian Region: a review of trace elements and isotopic composition. In: H. Downes and O. Vaselli (Editors), Neogene and related volcanism in the Carpatho-Pannonian Region. Acta Vulcanologica, pp. 155-166. Embey-Isztin, A. and Dobosi, G., 1997. A Kárpát-Pannon Térség neogén alkáli bazaltjainak nyomelem és izotópgeokémiai viszonyai. Földtani Közlöny, 127: 321-351. Gmeling, K., Harangi, S. and Kasztovszky, Z., 2005. Boron and chlorine concentration of volcanic rocks: An application of prompt gamma activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 265(2): 201-212. Harangi, S., Vaselli, O., Tonarini, S., Szabó, C., Harangi, R. and Coradossi, N., 1995. Petrogenesis of Neogene extension-related alkaline volcanic rocks of the Little Hungarian Plain Volcanic Field (Western Hungary). In: H. Downes and O. Vaselli (Editors), Neogene and related magmatism in the Carpatho-Pannonian Region. Acta Vulcanologica, pp. 173-187. Harangi, S., Wilson, M. and Tonarini, S., 1995. Petrogenesis of Neogene potassic volcanic rocks in the Pannonian Basin. In: H. Downes and O. Vaselli (Editors), Neogene and related magmalism in the Carpatho-Pannonian Region. Acta Vulcanologica, pp. 125-134. Harangi, S., 2001. Neogene magmatism in the Alpine-Pannonian Transition Zone - a model for melt generation in a complex geodynamic setting. Acta Vulcanologica, 13(1): 25-39. Harangi, S., 2001. Neogene to Quaternary volcanism of the Carpathian-Pannonian Region - A review. Acta Geologica Hungarica, 44(2-3): 223-258. Harangi, S., Downes, H., Kósa, L., Szabó, C., Thirtwall, M.F., Mason, P.R.D. and Mattey, D., 2001. Almandine Garnet in Calc-alkaline Volcanic Rocks of the Northern Pannonian Basin (Eastern-Central Europe): Geochemistry, Petrogenesis and Geodynamic Implications. J. Petrology, 42(10): 1813-1843. Harangi, S., Tonatrini, S., Vaselli, O. and Manetti, P., 2003. Geochemistry and petrogenesis of Early Cretaceous alkaline igneous rocks in Central Europe: Implications for a long-lived EAR-type mantle component beneath Europe. Acta Geologica Hungarica, 46(1): 77-94. Harangi, S., Mason, P.R.D. and Lukacs, R., 2005. Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: In situ trace element data of glass shards and mineral chemical constraints. Journal of Volcanology and Geothermal Research, 143(4): 237-257. Harangi, S., Downes, H. and Seghedi, I., 2006. Tertiany-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region. In: D. Gee and R. Stephenson (Editors), European Lithosphere Dynamics, Geological Society of London Memoir, pp. 167-190. Harangi, S. and Lenkey, L., 2007. Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: Role of subduction, extension, and mantle plume. Geological Society of America Social Papers Social Paper 418: Cenozoic Volcanism in the Mediterranean Area: 67-92. Sz. Harangi: Neogene-Quaternary magmatism of the Carpathian-Pannonian region... Eötyös Lecture Series - slide 112/114

Further reading - 2

Harangi, S., Downes, H., Thirlwall, M. and Gméling, K., 2007. Geochemistry, Petrogenesis and Geodynamic Relationships of Miocene Calc-alkaline Volcanic Rocks in the Western Carpathian Arc, Eastern Central Europe. Journal of Petrology, 48(12): 2261-2287. Kardson, D., Marton, E., Harangi, S., Józsa, S., Balogh, K., Pécskay, Z., Kovácsvölgyi, S., Szakmány, G. and Dulai, A., 2000. Volcanic evolution and stratigraphy of the Miocene Borzsony Mountains, Hungary: An integrated study. Geologica Carpathica, 51(5): 325-343. Karátson, D., Oláh, I., Pécskay, Z., Márton, E., Harangi, S., Dulai, A. and Zelenka, T., 2007. Miocene volcanism in the Visegrád Mountains, Hungary: an integrated approach and regional implications. Geologica Carpathica, 58(6): 541-563. Klébesz, R., Harangi, S. and Ntaflos, T., 2009. A balatonmáriai ultrakáli trachiandezit petrogenezise. Földtani Közlöny, 139/3: 237-250. Konecný, V., Lexa, J., Balogh, K. and Konecný, P., 1995. Alkali basalt volcanism in Southern Slovakia: volcanic forms and time evolution. In: H. Downes and O. Vaselli (Editors), Neogene and related magmatism in the Carpatho-Pannonian Region. Acta Volcanologica, 7, pp. 167-171. Konecný, V., Lexa, J. and Hojstricová, V., 1995. The Central Slovakia Neogene volcanic field: a review. In: H. Downes and O. Vaselli (Editors), Neogene and related magmatism in the Carpatho-Pannonian Region. Acta Volcanologica, pp. 63-78. Konecný, V., Kovác, M., Lexa, J. and Šefara, J., 2002. Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Special Publication Series, 1: 105-123. Kovács, I., Csontos, L., Szabó, C., Bali, E., Falus, G., Benedek, K. and Zajacz, Z., 2007. Paleogene-early Miocene igneous rocks and geodynamics of the Alpine-Carpathian-Pannonian-Dinaric region: An integrated approach. Geological Society of America Special Papers, 418: 93-112. Kovács, I. and Szabó, C., 2008. Middle Miocene volcanism in the vicinity of the Middle Hungarian zone: Evidence for an inherited enriched mantle source. Journal of Geodynamics, 45(1): 1-17. Lexa, J. and Konečný, V., 1974. The Carpathian Volcanic Arc: a discussion. Acta Geologica Hungarica, 18: 279-294. Lexa, J. and Konečný, V., 1998. Geodynamic aspects of the Neogene to Quaternary volcanism. In: M. Rakús (Editor), Geodynamic development of the Western Carpathians. Geological Survey of Slovak Republik, Bratislava, pp. 219-240. Lukács, R., Harangi, S., Ntaflos, T., Koller, F. and Pécskay, Z., 2007. A Bükkalján megleleno felso riolitufaszint vizsgálati eredményei: a harsányi ignimbrit egység. (The characteristics of the Upper Rhyolite Tuff Horizon in the Bükkalja Volcanic Field: The Harsány ignimbrite unit). Földtani Közlöny, 137(4): 487-514. Mason, P.R.D., Downes, H., Thirtwall, M., Seghedi, I., Szakács, A., Lowry, D. and Mattey, D., 1996. Crustal assimilation as a major petrogenetic process in east Carpathian Neogene to Quaternary continental margin arc magmas. Journal of Petrology, 37: 927-959. Mason, P.R.D., Seghedi, I., Szakacs, A. and Downes, H., 1998. Magmatic constraints on geodynamic models of subduction in the East Carpathians, Romania. Tectonophysics, 297(1-4): 157-176. Nemcok, M., Pospisil, L., Lexa, J. and Donelick, R.A., 1998. Tertiary subduction and slab break-off model of the Carpathian-Pannonian region. Tectonophysics, 295(3-4): 307-340. Panaiotu, C.G., Pecskay, Z., Hambach, U., Seghedi, I., Panaiotu, C.E., Tetsumaru, I., Orleanu, M. and Szakacs, A., 2004. Short-lived quaternary volcanism in the Persani Mountains (Romania) revealed by combined K-Ar and paleomagnetic data. Geologica Carpathica, 55(4): 333-339. Pecskay, Z., Lexa, J., A., S., Balogh, K., Seghed, I., Konečny, V., Kovács, M., Márton, E., Kaliciak, M., Széky-Fux, V., Póka, T., Gyarmati, P., Edelstein, O., Rosu, E. and Zec, B., 1995. Space and time distribution of Neogene-Quartenary volcanism in the Carpatho-Pannonian Region. In: H. Downes and O. Vaselli (Editors), Neogene and related volcanism in the Carpatho-Pannonian Region. Acta Vulcanologica, pp. 15-28. Seghedi, I. and Szakács, A., 1994. Upper Pliocene to Quaternary basaltic volcanism in the Persani Mountains. Romanian Journal of Petrology, 76: 101-107. Seghedi, I., Szakács, A. and Mason, P.R.D. (Editors), 1995. Petrogenesis and magmatic evolution in the East Carpathian Neogene volcanic arc (Romania). Neogene and related magmalism in the Carpatho-Pannonian Region, Acta Vulcanologica, 7, 135-143 pp. Seghedi, I., Balintoni, I. and Szakacs, A., 1998. Interplay of tectonics and neogene post-collisional magmatism in the intracarpathian region. Lithos, 45(1-4): 483-497.

Seghedi, I., Downes, H., Pecskay, Z., Thirtwall, M.F., Szakacs, A., Prychodko, M. and Mattey, D., 2001. Magmagenesis in a subduction-related post-collisional volcanic arc segment: the Ukrainian Carpathians. Lithos, 57(4): 237-262.

Sz. Harangi: Neogene-Quaternary magmatism of the Carpathian-Pannonian region...

Sz. Harangi: Neogene-Quaternary magmatism of the Carpathian-Pannonian region...

Eötvös Lecture Series - slide 113/114

Eötvös Lecture Series - slide 114/114

Further reading - 3

Seghedi, I., Downes, H., Szakacs, A., Mason, P.R.D., Thirlwall, M.F., Rosu, E., Pecskay, Z., Marton, E. and Panaiotu, C., 2004. Neogene-Quaternary magmatism and geodynamics in the Carpanhian-Pannonian region: a synthesis. Lithos, 72(3-4): 117-146.

Seghedi, I., Downes, H., Vaselli, O., Szakacs, A., Balogh, K. and Pecskay, Z., 2004. Post-collisional Tertiary-Quaternary mafic alkalic magmatism in the Carpathian-Pannonian region: a review. Tectonophysics, 393(1-4): 43-62. Seghed(I, L) Deves, H, Harangi, S., Mason, P.R.D. and Pecskay, Z., 2005. Geochemical response of magmas to Neogene-Quaternary continental collision in the Carpathian-Pannonian region: A review. Tectonophysics, 410(1-4): 485-499.

Szabo, C., Harangi, S., and Csontos, L., 1992, Review of Neogene and Quaternary volcanism of the Caroathian-Pannonian region, Tectonophysics, 208(1-3): 243-256.

Szakács, A., Seghedi, I. and Pécskay, Z., 1993. Pecularities of South Hargitha Mts. as the terminal segment of the Carpathian Neogene to Quaternary volcanic chain. Revue Roumaine de Géologie Géophysique et Géographie, Géologie, 37: 21-37.

Szakács, A., Zelenka, T., Márton, E., Pécskay, Z., Póka, T. and Seghedi, I., 1998. Miocene acidic explosive volcanism in the Bükk Foreland, Hungary: Identifying eruptive sequences and searching for source locations. Acta Geologica Hungarica, 41: 413-435.

Szakács, A., Seghedi, I. and Pécskay, Z., 2002. The most recent volcanism in the Carpathian-Pannonian Region. Is there any volcanic hazard? Geologica Carpathica Special Issue, Proceedings of the XVIIth Congress of Carpathian-Balkan Geological Association, 53: 193-194.

Vinkler, A.P., Harangi, S., Ntaflos, T. and Szakács, A., 2007. A Csomád vulkán (Keleti Kárpátok) horzsaköveinek kozettani és geokémiai vizsgálata: petrogenetikai következtetések. Földtani Közlöny, 137(1): 103-128.