A Global Dataset of Noble Gas Concentrations And Their Isotopic Ratios in Active Tectonic and Volcanic Settings V51B-0524

INTRODUCTION

The extent to which ocean islands are derived from the deep mantle (mantle plumes), or from chemical heterogeneities embedded within the mantle convective flow has long been debated. Noble gases have unique properties that enable them to provide significant information regarding this debate and make them important geodynamic tracers. The study of noble gas isotopic compositions in active tectonic and volcanic areas is central to understanding the origins of major volcanic anomalies on Earth's surface.

We have created a large database that contains information on noble gas concentrations and isotopic values from volcanic system in Mid-Ocean ridges, ocean islands, seamounts, and oceanic and continental arcs. Where it was available we also included the isotopic ratios of strontium, neodymium, and carbon. Overall, there are more than 5,000 entries in the database, which is sub-divided both into material sampled (e.g., volcanic glass, different minerals, fumarole, spring), and into different tectonic settings (MOR, ocean islands, volcanic arcs). The database extends previous compilations by Farley and Neroda (1998) and Graham (2002).

Atosa Aria Abedini, Shaul Hurwitz, William C. Evans US Geological Survey, Menlo Park CA

The distribution of samples in the database

Sample Type Glass Olivine **Pyroxene** Whole rock & other minerals Springs Fumaroles **Seafloor hydrothermal vents**

6.

MAJOR OBSERVATIONS

- There is a statistically distinct difference in the helium isotope composition between OIB Vs. MORB and volcanic arcs
- The helium isotope composition in glass and mineral samples supports previous studies that suggested an undegassed mantle as a source for oceanic island basalt (OIB), and a degassed mantle source for MORB and arcs.
- OIB samples display a very large range in He isotope composition in comparison to MORB and volcanic arc samples.
- The maximum ratio in fumaroles and hot spring samples is usually lower than in rocks from the same locality. When completed, the database will be available to the

scientific community through the World Wide Web, and will allow examination of some unresolved scientific problems, for example, the database can help identify the chemical characteristics of the mantle at most volcanic systems on Earth.

