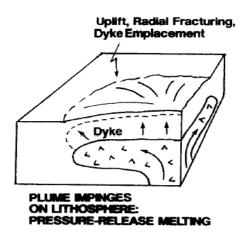
Uplift and Mantle Plumes

Ross Thompson

<u>Causes</u>

- 1. Dynamic Uplift
- 2. Hot Lithosphere Buoyancy
- 3. Lithosphere under-plating

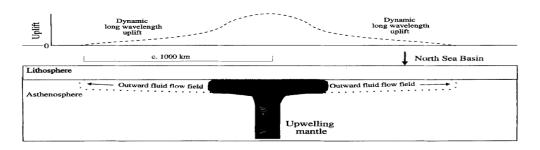

Uplift in Geological Record

E.g. Tertiary North Sea

- Uplift from Dynamic Uplift and Lithospheric buoyancy, no evidence of underplatting (*Nadin et al 1997*)
- > Average uplift 400m, maximum 900m
- Shows timing, location, and magnitude similar to that of the plume currently under Iceland
- Supported by sediment studies (Mudge et al. 2004) and petrology studies of volcanics (Thompson 1974; Maclennan & Lovell 2002).

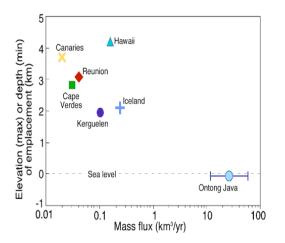
Uplift at Present

E.g. Giant radiating dyke swarms



- Cause by plume impinging on lithosphere below
- Forming roughly circular mound with radial fracturing
- Dyke propagation, and influx of material sustain uplift

(Ernst, R.E., et al. 1995)

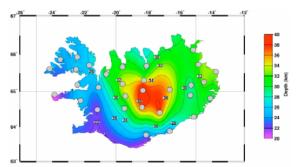

Problems with Plume Uplift

- Average sized plume of 1000m+ should produce equal amount of uplift in models (Campbell & Griffiths 1990)
- Some of the biggest igneous provinces show no sign of this pre-volcanic uplift e.g. Ontong Java Plateau, Columbia River Basalts, Siberian (*Czamanske, G.K., et al. 1998*).

Uplift which is seen in some LIPs is post volcanic (Ollier & Pain 2001); this however may have over-written pre-volcanic uplift.

- Icelandic plume which is migrating east (Lawver, L.A., and Muller, R.D., 1994) should have made the western side thicker.
- Not seen in drill cores. (Foulger G.R., Anderson D.L., & Natland J.H., 2003.)

Other Possible Causes


- Changes in the stress field e.g. crack propagation
- Geochemical changes e.g. volume change
- > Influx of magma e.g. increase in volume due to magma injection

<u>Summary</u>

(1) Pre-Volcanic uplift did occur but decays and is then over printed by sub-sequent more recent uplift.

(2) Uplift never did occur and the plume model is false.

- Isostacy calculations show uplift form a plume of sufficient magnitude would have caused up lift between 1km and 4km depending on the model (Farnetani & Richards, 1994).
- Should have caused large amount of sub-arial volcanism.
- But as shown here only negligible amount are seen.

References

Campbell, I. H., Griffiths, R. W., 1990. Implications of mantle plume structure for the evolution of flood basalts, Earth Planet. Sci. Lett., 99, 79-93.

Ernst, R.E., Head, W.J., Parfitt, E., Grosfils, E. and Wilson, L., Giant radiating dike swarms on Earth and Venus, Earth Sci. Rev., 39, 1-58, 1995.

Green, P.F., Duddy, I.R., R.J. Bray, C.L.E. Lewis, Elevated palaeotemperatures prior to Early Tertiary cooling tbroughout the UK region: implications for hydrocarbon generation, in: J.R. Parker (Ed.), Proc. 4th Conf. on Petroleum Geology of NW Europe, Vol. 2, Geol. Sot. London, 1993. pp. 1067-1074.

Lewis, C.L.E., P.F. Green, A. Carter, A.J. Hurford, Elevated late Cretaceous to Early Tertiary palaeotemperatures throughout Northwest England: three kilometres of Tertiary erosion?, Earth Planet. Sci. Lett. 112 (1992) 131-145.

Czamanske, G. K., Gurevitch, A. B., Fedorenko, V., Simonov, O., 1998. Demise of the Siberian plume: palaeogeographic and palaeotectonic reconstruction from the prevolcanic and volcanic record, North-central Siberia. Int. Geol. Rev., 40, 95-115.

Ollier, C., Pain, C., 2001. The Origin of Mountains. Routledge.

Mudge, D.C., Jones, S.M., Palaeocene uplift and subsidence events in the Scotland–Shetland and North Sea region and their relationship to the Iceland Plume, Journal of the Geological Society, London, Vol. 161, 2004, pp. 381–386.

Foulger G.R., Anderson D.L., & Natland J.H., 2003. An alternative model for Iceland & the North Atlantic Igneous Province. Penrose Conference.

P.A. Nadin et al., Earth and Planetary Science Letters 148 (1997) 109-127

Sheth, H.C., A Historical Approach to Continental Flood Basalt Volcanism: insights into Pre-Volcanic Rifting, Sedimentation and Early Alkaline Magmatism. Earth Planetary Science Letters 168, 19-26

Cruden, A.R., 1998. On the Emplacment of Tabular Granites. Journal of the Geological Society, London 155, p853- 862