Accepted Manuscript

A Unique Lower Mantle Source for Southern Italy Volcanics

Anita Cadoux, Janne Blichert-Toft, Daniele L. Pinti, Francis Albarède

PII: DOI: Reference: S0012-821X(07)00216-6 doi: 10.1016/j.epsl.2007.04.001 EPSL 8664

To appear in:

Earth and Planetary Science Letters

Received date: Revised date: Accepted date: 21 July 2006 28 March 2007 2 April 2007

Please cite this article as: Anita Cadoux, Janne Blichert-Toft, Daniele L. Pinti, Francis Albarède, A Unique Lower Mantle Source for Southern Italy Volcanics, *Earth and Planetary Science Letters* (2007), doi: 10.1016/j.epsl.2007.04.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	A Unique Lower Mantle Source for Southern Italy Volcanics
2	Anita Cadoux ^{1,2} *, Janne Blichert-Toft ³ , Daniele L. Pinti ⁴ , Francis Albarède ³
3	
4	1) UMR IDES 8148, Interactions et Dynamique des Environnements de Surface, Université
5	Paris Sud, Bât. 504, 91405 Orsay Cedex, France.
6	
7	2) Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Circuitos Institutos s/n,
8	Ciudad Universitaria, 04510 Mexico D.F., Mexico.
9	
10	3) Laboratoire de Sciences de la Terre, CNRS UMR 5570, Ecole Normale Supérieure de
11	Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 7, France.
12	
13	4) Département des Sciences de la Terre et de l'Atmosphère and GEOTOP-UQAM-McGILL,
14	Université du Québec à Montréal, P.O. Box 8888, Succ. Centre Ville, Montréal, Qc,
15	CANADA H3C 3P8.
16	G
17	* Corresponding author:
18	E-mail: cadoux@geofisica.unam.mx
19	Phone : (52 55) +5622 4028
20	Fax: (52 55) +5550 2486
21	
22	Revised Manuscript for Earth and Planetary Science Letters
23	March 27th, 2007

24 Abstract

25 The Southern Italy volcanism is characterized by the unusual occurrence of volcanic 26 rocks with ocean-island basalt (OIB)-like characteristics, in particular at Etna and Iblean Mts 27 in Sicily. The geochemical properties of the source of the Italian magmatism are usually 28 explained by a north-south binary mixing between a mantle- and a crustally-derived end-29 members. The nature of the mantle end-member is, however, not agreed upon. One type of 30 interpretation invokes a mixture of depleted mantle (DMM) and high U/Pb (HIMU) end-31 members (Gasperini et al., 2002), whereas an alternative view holds that the mantle end-32 member is unique and homogeneous, and similar to the FOZO- or C-type end-member 33 identified in oceanic basalts (Bell et al., 2004). Because mixing does not produce linear 34 relationships between the isotopic compositions of different elements, we applied Principal 35 Component Analysis (PCA) to the Pb isotope compositions of the Italian volcanics inclusive 36 of Sicily volcanoes. We demonstrate that HIMU cannot be an end-member of the Italian 37 volcanics, but rather that the common component C (~FOZO), which we interpret as 38 reflecting the lower mantle, best represents the mantle source of the Italian magmatism. Our 39 PCA calculation shows that the first principal component alone, which we take to be a 40 mixture of two geochemical end-members, C and a crustally-derived component, explains 41 99.4% of the whole data variability. In contrast, the DMM end-member (the second principal 42 component) is only present in the volcanics from the Tyrrhenian Sea floor. The C-like end-43 member, well represented by the Etna and Iblean Mts (Sicily), has relatively low ${}^{3}\text{He}/{}^{4}\text{He}$ 44 ratios suggesting upwellings of lower mantle material from the 670 km transition zone. A slab 45 detachment beneath the central- southern Italy and probably the Sicily could account for the 46 particular character of Italian magmatism.

47

48 Keywords: Italian magmatism; OIB; Lead isotopes; Principal Component Analysis; Common

49 component; Slab detachment.

CHR MMM

50 **1. Introduction**

51 The presence in oceanic basalts of a common mantle component that is not the 52 ubiquitous depleted upper mantle (asthenosphere) of mid-ocean ridge basalts (MORB) is 53 probably one of the major findings of igneous isotope geochemistry (Farley and Craig, 1992; 54 Hanan and Graham, 1996; Hart et al., 1992). Although all these authors concur that this 55 common mantle component, dubbed FOZO (FOcus ZOne) by Hart et al. (1992), PHEM 56 (Primitive HElium Mantle) by Farley and Craig (1992), and C (Common component) by 57 Hanan and Graham (1996), may represent the lower mantle, it has been recognized, probably 58 most vividly by Hanan and Graham, that it is not unequivocally associated with high ${}^{3}\text{He}/{}^{4}\text{He}$ 59 ratios and therefore does not carry the signature of primordial material. How ubiquitous the 60 common component (which we will hereafter refer to as C in recognition of the criteria used 61 by Hanan and Graham that were probably the strongest) and therefore how widespread 62 upwellings of lower mantle may be, is still unknown. One of the places where such an 63 upwelling was suggested is Southern Italy. Since the work of Hamelin et al. (1979), several 64 authors have emphasized the presence of a strong ocean island basalt (OIB) 'flavor' in the 65 lavas erupted in the area centred around Mt Etna, Sicily. More specifically, D'Antonio et al. 66 (1996) and Gasperini et al. (2002) suggested that this flavor was due to a mixture of two 67 standard mantle end-members: DMM, for depleted MORB mantle, and HIMU, for a high 68 U/Pb reservoir. Gasperini et al. (2002) observed very well-defined mixing hyperbolas 69 between mantle-derived and crustally-derived (or EM II) components in a variety of isotopic 70 systems, which they suggested reflect a thorough mixture between these two components in 71 the lavas from Southern Italy. Gasperini et al. (2002) inferred that OIB-type mantle is injected 72 through a slab window created under the Southern part of the peninsula by the rotation of the 73 downgoing slab subsequent to the Apennine collision, but wondered how hot spot material 74 may get trapped in such an upwelling. However, Bell et al. (2004) argued that such a thorough

75 pre-mixture of HIMU and DMM reminiscent of plume material is not necessary if the mantle 76 component in question is actually a FOZO-like end-member, e.g., what can be regarded as 77 garden-variety lower mantle. This hanging question (i.e., one or two mantle end-members at 78 the origin of Italian volcanics) justifies more isotopic work on Italian volcanics. With most 79 mafic lavas having received a great deal of attention (Conticelli et al., 2002; D'Antonio et al., 80 1996; 1999; Gasperini et al., 2002; Hawkesworth and Vollmer, 1979; Vollmer, 1976), we 81 instead focused on analyzing new samples of mostly silicic to intermediate composition. The 82 Italian silicic magmatism is mainly limited to Tuscany and belongs to the so-called Tuscan 83 Magmatic Province (TMP, Peccerillo, 2002). These volcanic and plutonic silicic rocks occur 84 without, or with only minor associated mafic rocks. Other silicic outcrops, not associated with 85 mafic rocks, are found in the Central Tyrrhenian Sea, on the islands of Ponza and Palmarola 86 (Pontine Archipelago, Gaeta Gulf; Fig.1).

87

88 2. Selected Italian volcanics and analytical methods

89 Eighteen samples from the TMP (Elba Island, San Vincenzo, Roccastrada, Radicofani, 90 and Mt. Amiata volcano) and eleven samples from the western Pontine Islands (Ponza and 91 Palmarola Islands) were analyzed. Their compositions are trachytic to rhyolitic, except for the 92 Radicofani sample (84BH), which is a basaltic andesite, and the summit unit (latitic flow) and 93 magmatic enclaves of Mt. Amiata, which are of trachyandesitic basaltic to trachyandesitic 94 composition (84AE & 84AF; 84AD, -AM and -AQ; Table 1). The major and trace element 95 compositions of these samples are reported and discussed in Cadoux (2005) and Cadoux et al. 96 (2005). Pb isotopic compositions are listed in Table 1 and plotted in Figure 2. The Pb isotope 97 data reported here for the Mt. Amiata magmatic enclaves and the Ponza and Palmarola 98 volcanic rocks are the first in the literature. Lead for isotope analysis was separated in the 99 clean lab at the Ecole Normale Supérieure in Lyon (ENSL) and the Pb isotopic compositions

100

were measured by MC-ICP-MS using the VG model Plasma 54 at ENSL using the Tl-doping 101 procedure of White et al. (2000) with recent adjustments to the procedure documented by Albarède et al. (2004) and Blichert-Toft et al. (2005). Analysis between every two samples of 102 103 the NBS-981 Pb standard and, twice during every analysis session, also of our in-house Pb 104 standard mixture ENSL-98B showed external reproducibility of 300, 350 and 430 ppm for, respectively, ²⁰⁶Pb/ ²⁰⁴Pb, ²⁰⁷Pb/ ²⁰⁴Pb and ²⁰⁸Pb/ ²⁰⁴Pb. We reanalyzed the sample solutions 105 for nine samples and except for two duplicate measurements of 83AA and 84BH (which show 106 610 and 533 ppm differences, respectively, on the 208 Pb/ 204 Pb ratio between the two analyses). 107 108 the analyzed replicates fall well within the external error bars (Blichert-Toft et al., 2005).

109

110 **3. Results**

Figure 2 shows that the Pb isotope compositions of analyzed silicic/intermediate rocks 111 112 are consistent with literature values on lavas of mafic compositions. The differentiated rocks have thus preserved the Pb isotopic signature of their magmatic sources. The ²⁰⁶Pb/²⁰⁴Pb 113 114 ratios are in general lower for the Tuscan samples than for the samples from the Pontine 115 Islands. The mafic enclaves from the Monte Amiata volcano are slightly more radiogenic than their silicic host rocks. There is very little dispersion in ²⁰⁷Pb/²⁰⁴Pb (with the exception of the 116 117 San Vincenzo aplites). Even if the range of Pb isotope compositions is relatively narrow, the 118 precision of our analytical technique permits to distinguish regional correlations between ²⁰⁸Pb/²⁰⁴Pb and ²⁰⁶Pb/²⁰⁴Pb: positive for Tuscany and negative for the Pontine Islands. Our Pb 119 120 isotope data for Tuscany fall within the field of TMP literature values (Peccerillo, 2005; 121 Fig.2), with the exception of the San Vincenzo aplites, which are more radiogenic in Pb than 122 the other Tuscan samples. On the scale of the entire Italian Peninsula, the igneous rocks forming the TMP and the Pontine Islands are characterized by low ²⁰⁶Pb/²⁰⁴Pb and, for a given 123 ²⁰⁶Pb/²⁰⁴Pb, by radiogenic ²⁰⁷Pb/²⁰⁴Pb and ²⁰⁸Pb/²⁰⁴Pb. 124

101

126 4. Discussion

127 The ambiguity between a single typical FOZO/C-like component (lower mantle) and 128 an assemblage of two end-members, one of which involves the upper mantle (DMM), in the 129 source of the Italian volcanics is of important dynamic significance. It is, however, difficult to 130 resolve these two scenarios in plots involving curvilear mixing trends, typically those based 131 on the isotopic compositions of different elements (e.g., Bell et al., 2004; Gasperini et al., 132 2002). Instead, here we chose a different approach. We ran a statistical treatment, by the 133 principal component analysis (PCA) method, of the Pb isotopic compositions on magmatic rocks from Italy and Sicily (Fig. 1). For a complete description of the PCA method, readers 134 135 can refer to Le Maître (1982) and Albarède (1995). Why has been the PCA exclusively based 136 on Pb data?

(1) Partial melting fractionates elemental ratios and, as a result of different melt
histories, a binary mixture in the source does not translate into a single hyperbola in the melts.
The resulting deviations from linearity greatly increase dispersion in the multi-elemental
space of isotopic compositions, often to the extent that spurious end-members will appear.

(2) The Pb isotopes space preserves linearity during mixing so that the nature of the
 source components may be ascertained with a much higher degree of confidence. As
 discussed in Debaille et al. (2006), we chose the space of ²⁰⁶Pb- instead of the conventional
 ²⁰⁴Pb-normalized ratios so that correlations between analytical errors are minimized.

Our data set includes our new Pb isotopic data on silicic rocks from the Tuscany and the Pontine Islands (Table 1) combined with published data on mafic rocks from the Tuscan, Roman and Campanian Provinces, as well as data on the Tyrrhenian Sea floor (ODP sites 651 & 655), the Aeolian Islands and Sicily (Gasperini et al., 2002). The Pb isotope data set of

149

Gasperini et al. (2002) was selected here because it was obtained by the same analytical procedures in the same lab as the data of the present work.

In order to minimize ambiguities we will restrict the use of "component" to principal components, and contrary to general usage, refer to "end-members" for the geochemical components. Our PCA calculation indicates that the first two axis projections cover almost the totality of the initial information: axes 1+2 = 99.8 % of the total variability (Appendix 1). The first axis (or component) alone accounts for 99.4 % of the total variability. The third axis is thus considered as pure noise. It is noteworthy that there is a factor of about ten difference between component 1 (-3.3 to +0.7) and component 2 (-0.1 to +0.3).

In Figure 3, we plotted our own and the literature data in ²⁰⁸Pb/²⁰⁶Pb vs. ²⁰⁴Pb/²⁰⁶Pb and 158 ²⁰⁸Pb/²⁰⁴Pb vs. ²⁰⁶Pb/²⁰⁴Pb diagrams together with compositions of Mid Atlantic Ridge (MAR) 159 160 basalts (DMM end-member), ocean island basalts representative of the HIMU end-member, 161 the common component C, and compositions of subducted sediments of world's trenches and 162 the Italian crust. In order to determine the nature of the principal components 1 and 2, we 163 projected the corresponding eigenvectors of the PCA in these two isotope spaces (Fig. 3). It 164 reveals that the first component, accounting for nearly all the variability (99.4 %), does not 165 point toward the HIMU composition defined by the type-locality samples but rather passes 166 through the C end-member of Hanan and Graham (1996). This shows that the end-member 167 giving rise to the OIB-like signatures of southern Italy volcanoes is consistent with C and not, 168 as widely accepted so far (e.g., D'Antonio et al., 1996; Esperanza and Crisci, 1995; Gasperini 169 et al., 2002; Hamelin et al., 1976; Schiano et al., 2001; Trua et al., 1998) with the HIMU end-170 member. The involvement of C component (or FOZO-like) rather than HIMU was already 171 invoked by Bell et al. (2004) but here it is for the first time indisputably demonstrated with a 172 different method.

173

The first principal component therefore corresponds to a mixture of two geochemical end-174 members: the C end-member and a crustally-derived end-member (Fig. 3). Our data do not allow discriminating between continental crust or subducted sediments. Even combined with 175 176 other isotopic systems, it is very difficult to determine the exact nature of the crustal-like end-177 member, as attested by the multiple different names attributed to this end-member (e.g.: 178 crustally-derived end-member, Gasperini et al., 2002; ITEM, Bell et al., 2004; or EM2e, 179 Peccerillo and Lustrino, 2005). Based on a number of geochemical criteria, Gasperini et al. 180 (2002) considered that the crustally-derived end-member is dominated by pelagic rather than 181 terrigenous sediments. ITEM (for ITalian Enriched Mantle) is isotopically similar to the upper 182 continental crust and Atlantic pelagic sediments and could represent metasomatized mantle 183 (Bell et al., 2004). Finally, the EM2e (e for enriched) is an end-member defined by Peccerillo 184 and Lustrino (2005) with Pb isotopic ratio close to EM2 (Enriched Mantle 2), but with much 185 higher ⁸⁷Sr/⁸⁶Sr. These authors favor the hypothesis of a mantle contamination by upper crust 186 material brought into the upper mantle by subduction processes.

Taking into account the geology and tectonic setting of the region, both subducted sediments and upper continental crust are probably involved. Our interest here being the MANTLE source end-member of the Italian volcanics, we will not investigate further on the "*crustal*" one. Whatever its nature, it is better represented by the peninsular Italy volcanic rocks while the C end-member is better expressed in Sicily (Fig. 3). The Aeolian Islands seem to be a (nearly homogeneous) mixture of these two geochemical end-members.

The second eigenvector trends toward the MAR basalt field and the Tyrrhenian Sea floor basalts fall along this vector. We will thus accordingly assume that the second principal component is controlled by a DMM-type geochemical end-member. As emphasized by Bell et al. (2004) and shown by the present analysis, however, the contribution of the DMM endmember in the source of the Italian volcanism is extremely small since it represents no more

198

than 0.4 % of the total variability present in our data, whereas the bulk of the variance of ourdata set is accounted for by the C and crustally-derived end-members mixture.

It is remarkable that a nearly pure composition of C is reached in Sicily (Etna and Ibleans; Fig. 3). In the following discussion we will focus on the isotope characteristics, the possible origin and the reasons for why the C component is sampled in this particular area.

203 Using the published isotopic data on Etna and Iblean Mts, the composition of the C end-member found in Sicily can be constrained as follows: low ⁸⁷Sr/⁸⁶Sr (~ 0.703), 204 intermediate 143 Nd/ 144 Nd (0.51288-0.51306) and Pb isotope ratios (206 Pb/ 204 Pb = 19.8-19.9, 205 ${}^{207}\text{Pb}/{}^{204}\text{Pb} = 15.62-15.68$, ${}^{208}\text{Pb}/{}^{204}\text{Pb} = 39.2-39.6$; Gasperini et al., 2002), and relatively low 206 207 ³He/⁴He (6.7-7.5 Ra; Sapienza et al., 2005 and references therein). This suggests a source with 208 low Rb/Sr, moderate Sm/Nd, U/Pb, and Th/Pb, and low time-integrated ³He/(U+Th). This 209 latter feature could be explained by a source enriched in U+Th relative to primordial ³He or a source relatively depleted in ³He, such as the convecting upper-mantle MORB source 210 211 $({}^{3}\text{He}/{}^{4}\text{He} = 8 \pm 1 \text{ Ra}$; Farley and Neroda, 1998; Hilton and Porcelli, 2003). It is noteworthy 212 that the C end-member (Etna & Iblean Mts) displays the highest He isotope ratios (6.7-7.5 213 Ra) of all of the Italian volcanics (0.5 Ra $< {}^{3}$ He/ 4 He < 7.5 Ra; Sapienza et al., 2005).

214 The isotopic characteristics described above are roughly similar to those given by 215 Hanan and Graham (1996), who defined the common component C on the basis of the convergence of MORB Pb isotope arrays (Atlantic, Pacific, and Indian MORB): ⁸⁷Sr/⁸⁶Sr = 216 $0.703 - 0.704, \ ^{143}\text{Nd}/^{144}\text{Nd} \ = \ 0.51285 - 0.51295, \ ^{206}\text{Pb}/^{204}\text{Pb} \ = \ 19.2 - 19.8, \ ^{207}\text{Pb}/^{204}\text{Pb} \ = \ 15.55 - 10.51295, \ ^{206}\text{Pb}/^{204}\text{Pb} \ = \ 1$ 217 15.65, and ${}^{208}\text{Pb}/{}^{204}\text{Pb} = 38.8-39.6$, while He isotopic ratios are variable (both higher and 218 lower than normal MORB). Regardless of the ³He/⁴He ratio of C, an increase in ³He/⁴He with 219 220 the proportion of the C component is observed in both oceanic basalts (MORB and OIB) and 221 Italian volcanics. Thus, the Italian volcanoes are part of the fan-shaped pattern of oceanic 222 basalts converging on C in the Pb isotope space (Fig.1 in Hanan and Graham, 1996). Unlike

223

MORB and OIB, where the dominant binary mixing is C + DMM and C + EM1 respectively, the Italian volcanism is dominated by a C + crustally-derived end-members binary mixing.

225 Figure 4 shows that in the Italian volcanics, ³He/⁴He increases linearly with increasing ²⁰⁶Pb/²⁰⁴Pb, i.e. in rocks plotting toward C (toward Southern Italy). The C-rich lavas from 226 Southern Italy have ³He/⁴He transitional between the ratios commonly reported for MORB 227 228 [24] and the SubContinental Lithospheric Mantle (SCLM, Gautheron and Moreira, 2002). In 229 contrast, in Northern Italy, volcanic rocks have He and Pb isotopic compositions similar to 230 those of the continental crust. This trend in He-Pb isotope space confirms that the Italian 231 volcanism as a whole is a binary mixture between C and a crustally-derived source. The C 232 end-member therefore may be representative of the mantle source of Italian volcanics. The 233 stronger crustal isotopic signature in the northern Italy might be due to:

1) Shallow processes such as crustal anatexis, important interactions of the mantle liquidswith continental crust, and

236 2) Compositionally different slabs: the presence of continental lithosphere (Adriatic slab)
237 underneath the northern Apennines since about 25 Ma, while below the Calabrian Arc and the
238 southern Tyrrhenian region a Mesozoic oceanic lithosphere (the Ionian slab) is subducting
239 (e.g., Gueguen et al., 1998; Serri, 1990, Serri et al., 1993).

240 Hanan and Graham (1996) pointed out that in oceanic (MORB, OIB) basalts the C 241 end-member is well characterized by its range in Sr, Nd, and Pb isotopic compositions but 242 displays variable He isotopic ratios. The present interpretation also suggests that the C endmember beneath Southern Italy has ³He/⁴He ratios slightly lower than MORB values. Hart et 243 244 al. (1992) first suggested that FOZO (or C) represents the lower mantle, which leads to the 245 conclusion that the lower mantle has variable ³He/⁴He. This is different from the canonical 246 view (e.g., Allègre et al., 1983; Kellogg and Wasserburg, 1990; O'Nions and Oxburgh, 1983) that the lower mantle is a consistently high- 3 He/ 4 He reservoir. Such variability, however, does 247

248

not necessarily create a problem if the lower mantle contains juxtaposed streaks of recycled oceanic lithosphere and primitive mantle (Boyet et al., 2005). Alternatively, one may choose to emphasize the similarity between ³He/⁴He ratios in the Southern Italian volcanics and in inclusions from the subcontinental lithosphere (Gautheron and Moreira, 2002) and consider that the C end-member represents delaminated SCLM. We do not favor this interpretation for two reasons:

(1) The ubiquitous association of DMM and C in mixing trends in Atlantic MORB (Agranier et al., 2005; Blichert-Toft et al., 2005, Graham, 2002) strongly suggests that the C endmember does not originate by melting of the modern SCLM. If it did, it would require that surprisingly large fractions of the convective mantle formed by foundered remnants of subcontinental lithosphere.

(2) SCLM formed at different times and does not mix laterally: a broad range of isotopic
properties would therefore be expected corresponding to the various formation ages, which
does not fit the rather well-defined Sr, Nd, and Pb isotopic compositions of the C endmember.

263 We therefore favor the interpretation of the C end-member as representing lower 264 mantle. The lower mantle being usually considered to be a high ³He/⁴He mantle reservoir (Allègre et al., 1983; Kellogg and Wasserburg, 1990; O'Nions and Oxburgh, 1983), we 265 266 suggest that C is located at the 670 km seismic discontinuity (the boundary between upper 267 and lower mantle) rather than inside the lower mantle or at the core-mantle boundary because 268 of its relatively low (MORB-like) helium isotopic ratios in Sicily. As discussed in Hanan and 269 Graham (1996), C material can have both high and low He isotopic ratios; C with low 270 3 He/ 4 He might originate from regions of the 670 km transition zone where recycled or altered 271 oceanic crust has been stored (e.g., Ringwood, 1994). Taking into account that the 272 geodynamic history of the Mediterranean area is marked by several subductions since the last

273 Cretaceous time (e.g., Stampfli and Borel, 2004), this hypothesis is credible. In our mind, the 274 most probable mechanism allowing the sampling of C material from the 670 km boundary layer is a slab detachment or slab window beneath the central-southern Italy. This hypothesis 275 276 is supported by different arguments: 277 1) Many independent tomographic studies corroborate the existence of a zone of negative 278 wave-speed anomalies in the top 200-250 km under the central-southern Apennines (e.g., 279 Bijwaard and Spakman, 2000; Cimini and Gori, 2001; Piromallo and. Morelli, 1997, 2003; 280 Spakman, 1991; Spakman et al., 1993, Spakman and. Wortel, 2004). 281 2) This is consistent with the modelling results of Van der Zeddle and Wortel (2001) who 282 showed that slab detachment can occur at shallow level (until Moho depth) and allow inflow 283 of hot asthenosphere and subduction wedge mantle. 284 3) Numerical modelling (Wong and Wortel, 1997; Yoshioka and. Wortel, 1995) further 285 demonstrates that slab detachment and its lateral migration is a feasible process, particularly 286 in the late subduction stage, when continental lithosphere enters the trench (i.e., the collision 287 stage). 288 4) According to Carminati et al. (2002), the strong rheologic contrast between a continental

(Adriatic) and an oceanic (Ionian) slab is likely amplified by the higher strain rates and cooler
slab temperatures in the southern Italy due to the faster subduction rollback and the oceanic
composition of the downgoing lithosphere.

5) Paleogeographic and tectonic reconstructions demonstrate that the central-southern Apennines detachment could have occurred in the Pliocene because of differential plate velocities between the Northern Apennines (where continental lithosphere was subducting) and the Central-Southern Apennines beneath which the slab were rolling back quickly toward southeast (e.g., Carminati, et al., 1998; Rosenbaum et al., 2002; Rosenbaum and Lister, 2004).

297

6) Finally, Davies and Von Blanckenburg (1995) noted that a slab detachment may cause
specific change in the volcanics geochemistry from more subduction-related calc-alkaline to
more intraplate-like alkaline as it is observed from Northern to Southern Italy, respectively
(e.g., Peccerillo, 2005 and references therein).

301 One problem encountered with this model is that the negative wave-speed anomaly 302 (interpreted as a slab detachment) becomes smaller toward the Calabria arc and is not visible beneath Sicily in most of the tomographic mantle models. However, as mentioned by 303 304 Spakman and Wortel (2004), none of these models has the spatial resolution to exclude a 305 small slab detachment in this area. An alternative (or complementary) process could be invoked for this particular Sicilian area: the development of a tear at the western edge of the 306 307 Ionian plate combined with its roll-back and steepening motion, could favor the "suction" of 308 asthenospheric material from under the neighboring African plate (Dvorkin et al., 1993; 309 Gvirtzman and Nur, 1999; Trua et al., 2003). According to Dvorkin et al. (1993), the narrow 310 slabs rolling back relatively quickly, such as the Ionian plate, are excellent candidates for 311 lateral asthenospheric fluxes above the slab. It is important to consider the particular location 312 of Mt Etna. It is situated on the suture between the converging European and African plates 313 (Fig.1), a little to the side of the Ionian slab rather than directly above it, and it lies where the 314 top of the slab is as at ~70 km depth (Gvirtzman and Nur, 1999); this depth is too shallow to 315 permit melting of the Tyrrhenian mantle wedge (however beneath the Aeolian islands, the top 316 of the slab is deep enough to produce such a melting). Moreover, it is noteworthy that the 317 Etna and Iblean Mts have the same nearly pure C composition (suggesting a similar source) 318 while they are located on either side of the subduction front (Fig.1). Finally, as emphasized by 319 Trua et al. [55], Etna is an OIB-like rather than an OIB-type as it the case for Iblean Mts. All 320 these observations further support the idea that Mt Etna is not fed by material coming from

321

the Tyrrhenian mantle wedge between the subducting and overriding plates (Gvirtzman and 322 Nur, 1999).

Figure 5 illustrates our view of the mantle structure beneath Italy. Here, we emphasized the involvement of AFRICAN mantle in the source of Italian volcanics as it has been already suggested for the most southern Italy volcanoes (e.g., Etna and Ibleans; Gvirtzman and Nur, 1999; Trua et al., 2003) and recently for the Campanian volcanoes (e.g., Vesuvius; De Astis et al., 2006). How the African mantle passes through the slab detachment is difficult to determine. In our model, we arbitrary assume fingers-like upwellings.

How such a process could have taken place without triggering the entrainment of depleted upper mantle probably reflects that the upper mantle beneath Italy is particularly cold, likely as a result of the multiple Mediterranean subduction systems (Apennines, Maghrebides, Betic-Alboran, Dinarides, Aegean) that have been present for the last ~30 My over a rather small distance (e.g., Gueguen et al., 1998).

334

335 **4. Conclusions**

336 A single end-member, the common component C, representative of lower mantle, can 337 account for the OIB flavor of the southern Italy volcanoes, particularly Etna and Iblean Mts. 338 The whole of Italian magmatism can be considered as a dominant mixture of C and a 339 crustally-derived end-member, with a more important proportion of this latter in Northern 340 Italy. The presence of C in Italy further supports the idea that the common end-member of 341 oceanic basalts is also present in continental domains (e.g., Bell and Tilton, 2001; Dunworth 342 and Bell, 2001) and is thus as ubiquitous as the DMM end-member. The reasons for why the 343 DMM is so poorly expressed in the source of the Italian volcanism and the mechanisms 344 responsible for the upwelling of the lower mantle have yet to be explored.

346

ACKNOWLEDGMENTS

We thank Arnaud Agranier for his help during sample preparation and Philippe Télouk for assistance with the Plasma 54. AC and DLP wish to thank J.-C. Lefevre and S. Chiesa for assistance during sampling at Roccastrada, Mt. Amiata and Radicofani. Finally, we wish to thank handling editor H. Elderfield and Chris Hawkesworth, Keith Bell and an anonymous reviewer for their constructive comments which greatly improved the manuscript. A doctoral fellowship from the French Ministry of Education, funding from the GEOTOP-UQAM-McGill and NSERC Discovery Grant no. 314496-05 supported AC work.

A Children and a second

354

REFERENCES

- Agranier, A., Blichert-Toft, J., Graham, D., Debaille, V., Schiano, P., Albarède, F., 2005.The
 spectra of isotopic heterogeneities along the mid-Atlantic Ridge, Earth Planet. Sci.
 Lett. 238, 96-109.
- Albarède, F., Introduction to Geochemical Modeling, 1995 Cambridge Univ. Press, New
 York.
- Albarède, F., Télouk, P., Blichert-Toft, J., Boyet, M., Agranier, A., Nelson, B., 2004. Precise
 and accurate isotopic measurements using multiple-collector ICPMS, Geochim.

362 Cosmochim. Acta 68, 2725-2744.

- Allègre, C.J., Staudacher, T., Sarda, P., Kurz, M., 1983. Constraints on evolution of Earth's
 mantle from rare gas systematics, Nature 303, 762-766.
- Bell, K., Tilton, G.R., 2001. Nd, Pb and Sr isotopic compositions of East African
 carbonatites: Evidence for mantle mixing and plume inhomogeneity, J. Petrol. 42,
 1927–1945.
- Bell, K., Castorina, F., Lavecchia, G., Rosatelli, G., Stoppa, F., 2004. Is there a mantle plume
 below Italy? EOS 85, 541-547.
- Bijwaard, H., Spakman, W., 2000. Non-linear global P-wave tomography by iterated
 linearized inversion, Geophys. J. Int. 141, 71–82.
- 372 Blichert-Toft, J., Agranier, A., Andres, M., Kingsley, R., Schilling, J.-G, Albarède, F., 2005.
- Geochemical segmentation of the Mid-Atlantic Ridge north of Iceland and ridge–hot
 spot interaction in the North Atlantic, G-cubed 6, 1-27.
- Boriani, A., Origoni, E.G., Pinarelli, L., 1995. Paleozoic evolution of southern Alpine crust
 (northern Italy) as indicated by contrasting granitoid suites, Lithos 35, 47-63.

377								
	Boyet, M., Garcia, M.O., Pik, R., Albarède, F., 2005. A search for ¹⁴² Nd evidence of							
378	primordial mantle heterogeneities in plume basalts, Geophys. Res. Lett. 32, (L04306,							
379	doi:04310.01029/02004GL021873.).							
380	Cadoux, A., 2005. Le magmatisme acide Plio-Pleistocène de la Marge Tyrrhénienne (Italie							
381	Centrale) : Géochronologie, Pétrogénèse et Implications Géodynamiques, Earth							
382	Sciences PhD Thesis, Université Paris Sud XI.							
383	Cadoux, A., Pinti, D.L., Aznar, C., Chiesa, S., Gillot, PY., 2005. New Chronological and							
384	Geochemical Constraints on the Genesis and Geological Evolution of Ponza and							
385	Palmarola Volcanic Islands (Tyrrhenian Sea, Italy), Lithos 81, 121-151.							
386	Caggianelli, A., Del Moro, A., Paglionico, A., Piccarreta, G., Pinarelli, L., Rottura, A., 1991 Lower crustal granite genesis connected with chemical fractionation in the continental							
387	Lower crustal granite genesis connected with chemical fractionation in the continental							
388	crust of Calabria (Southern Italy), Eur. J. Mineral. 3, 159-180.							
389	Carminati, E., Wortel, M.J.R., Spakman, W., Sabadini, R., 1998. The role of slab detachment							
390	processes in the opening of the western-central Mediterranean basins: some geological							
391	and geophysical evidence, Earth Planet. Sci. Lett. 160, 651-665.							
392	Carminati, E., Giardina, F., Doglioni, C., 2002. Rheological control of subcrustal seismicity in							
393	the Apennines subduction (Italy), Geophys. Res. Lett. 291882,							
394	doi:1810.1029/2001GL014084.							
395	Cimini, G.B., De Gori, P., 2001. Nonlinear P-wave tomography of subducted lithosphere							
396	beneath central-southern Apennines (Italy), Geophysical Research Letters 28, 4387-							
397	4390.							
398	Conticelli, S., 1998. The effect of crustal contamination on ultrapotassic magmas with							
399	lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina							
400	lavas and xenoliths, Central Italy, Chem. Geol. 149, 51-81.							

401	Conticelli, S., D'Antonio, M., Pinarelli, L., Civetta, L., 2002. Source contamination and
402	mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks:
403	Sr-Nd-Pb isotope data from Roman province and southern Tuscany, Mineralogy and
404	Petrology 74, 189-222.
405	D'Antonio, M., Di Girolamo, P., 1995. Petrological and geochemical study of mafic
406	shoshonitic volcanics from Procida-Vivara and Ventotene Islands (Campanian
407	Region, South Italy), Acta Vulcanol. 5, 69-80.
408	D'Antonio, M., Tilton, G.R., Civetta, L., 1996. Petrogenesis of Italian alkaline lavas deduced
409	from Pb-Sr-Nd isotope relationships, in: Basu, A., and Hart, S.R., (Eds), Earth
410	processes: reading the isotopic code 95, AGU (Monograph Series), Washington, DC,
411	pp. 253–267.
412	D'Antonio, M., Civetta, L., Di Girolamo, P., 1999. Mantle source heterogeneity in the
413	Campanian Region (South Italy) as inferred from geochemical and isotopic fetaures of
414	mafic volcanic rocks with shoshonitic affinity, Mineralogy and Petrology 67, 163-192.
415	Davies, J.H., Von Blanckenburg, F., 1995. Slab breakoff: A model of lithosphere detachment
416	and its test in the magmatism and deformation of collisional orogens, Earth Planet.
417	Sci. Lett. 129, 85-102.
418	De Astis, G., Kempton, P.D., Peccerillo, A., Wu, T.W., 2006. Trace element and isotopic
419	variations from Mt. Vulture to Campanian volcanoes: constraints for slab detachment
420	and mantle inflow beneath southern Italy, Contrib Mineral. Petrol. 151, 331-351.
421	Debaille, V., Blichert-Toft, J., Agranier, A., Doucelance, R., Schiano, P., Albarède, F., 2006.
422	Geochemical component relationships in MORB from the Mid-Atlantic Ridge, 22-
423	35°N, Earth Planet. Sci. Lett. 241, 844-862.
424	Dunworth, E.A., Bell, K., 2001. The Turiy Massif, Kola Peninsula, Russia: isotopic and
425	geochemical evidence for multi-source evolution, J. Petrol. 42, 377–405.

426	Ducatin I Nur A Mautro C Dan Auroham 7 1002 Normous subducting slobs and the
	Dvorkin, J., Nur, A., Mavko, G., Ben-Avranam, Z., 1995. Narrow subducting stabs and the
427	origin of backarc basins, Tectonophysics 227, 63-79.
428	Esperanza, S., Crisci, G.M. 1995. The island of Pantelleria: a case for the development of
429	DMM-HIMU isotopic compositions in a long-lived extensional setting, Earth Planet.
430	Sci. Lett. 136, 167-182.
431	Farley, K.A., Craig, H., 1998. Mantle plumes and mantle sources, Science 258(1992) 821-
432	822.
433	Farley, K.A., Neroda, E., 1998. Noble Gases in the Earth's mantle, Annual Review of Earth
434	and Planetary Sciences 26, 189-218.
435	Gasperini, D., Blichert - Toft, J., Bosch, D., Del Moro, A., Macera, P., Albarède, F., 2002.
436	Upwelling of deep mantle material through a plate window: Evidence from the
437	geochemistry of Italian basaltic volcanics, J. Geophys. Res. 107, 2367-2386.
438	Gautheron, C.E., Moreira, M., 2002. Helium signature of the subcontinental lithospheric
439	mantle, Earth Planet. Sci. Lett. 199, 39-47.
440	Gianelli, G., Puxeddu, M., 1979. An attempt of classifying the Tuscan Paleozoic:
441	geochemical data, Mem. Soc. Geol. It. 20, 435-446.
442	Graham, D.W., 2002. Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean
443	Island Basalts: Characterization of Mantle Source Reservoirs, in: Porcelli, D.,
444	Ballentine, C.J., Wieler, R., (Eds), Noble Gases in Geochemistry and
445	Cosmochemistry, Reviews in Mineralogy and Geochemistry 47, Mineralogiocal
446	Society of America, Washington DC, pp. 247-319.
447	Gueguen, E., Doglioni, C., Fernandez, M., 1998. On the past-25 Ma geodynamic evolution of
448	the western Mediterranean, Tectonophysics 298, 259-269.
449	Gvirtzman, Z., Nur, A., 1999. The formation of Mount Etna as the consequence of slab
450	rollback, Nature 401, 782-785.

451	Hamelin, B., Lambret, B., Moron, J.L., Treuil, M., Allègre, C.J., 1979. Geochemistry of
452	basalts from the Tyrrhenian Sea, Nature 278, 832-834.
453	Hanan, B.B., Graham, D.W., 1996. Lead and Helium Isotope Evidence from Oceanic Basalts
454	for a Common Deep Source of Mantle Plumes, Science 272, 991-995.
455	Hart, S.R., Hauri, E.H., Oschmann, L.A., Whitehead, J.A., 1992. Mantle plumes and
456	entrainment: Isotopic evidence, Science 256, 517-520.
457	Hawkesworth, C.J., Vollmer, R., 1979. Crustal contamination versus enriched mantle:
458	¹⁴³ Nd/ ¹⁴⁴ Nd and ⁸⁷ Sr/ ⁸⁶ Sr evidence from the Italian volcanics, Contrib. Mineral. Petrol.
459	69, 151-165.
460	Hilton, D.R., Porcelli, D., 2003. Noble gases as mantle tracers, in: Carlson, R.W., (Ed),
461	Treatise on Geochemistry 2, Elsevier, pp. 277-318.
462	Kellogg, L.H., Wasserburg, G.J., 1990. The role of plumes in mantle helium fluxes, Earth
463	Planet. Sci. Lett. 99, 276-289.
464	Le Maitre, R.W., 1982, Numerical Petrology; statistical interpretation of geochemical data,
465	Elsevier, Amsterdam.
466	O'Nions, R.K., Oxburgh, E.R., Heat and helium in the Earth, Nature 306(1983) 429-431.
467	Peccerillo, A., 2002. Plio-Quaternary magmatism in Central-Southern Italy: a new
468	classification scheme for volcanic provinces and its geodynamic implications, Boll.
469	Soc. Geol. It. Volume speciale n.1, 113-127, 112 ff.
470	Peccerillo, A., 2005. Plio-Quaternary volcanism in Italy. Petrology, Geochemistry,
471	Geodynamics, Springer, Heidelberg.
472	Peccerillo, A., Lustrino, M., 2005, Compositional variations of Plio-Quaternary magmatism
473	in the circum-Tyrrhenian area: Deep- vs. shallow-mantle processes, in: Foulger, G.R.,
474	Natland, J.H., Presnall, D.C., Anderson, D.L., (Eds), Plates, Plumes & Paradigms
475	Special Paper 388, Geological Society of America, pp. 422-434.

476	Pinarelli, L., 1991. Geochemical and isotopic (Sr, Pb) evidence of crust-mantle interaction in
477	acidic melts - The Tolfa-Cerveteri-Manziana volcanic complex (central Italy): a case
478	history, Chem. Geol. 92, 177-195.
479	Piromallo, C., Morelli, A., 1997. Imaging the Mediterranean upper mantle by P-wave travel
480	time tomography, Ann. Geofis. XL, 963-979.
481	Piromallo, C., Morelli, A., P wave 2003. tomography of the mantle under the Alpine-
482	Mediterranean area, J. Geophys. Res. 108, 110, 123.
483	Plank, T., Langmuir, C.H., 1998. The geochemical composition of subducting sediment and
484	its consequences for the crust and mantle, Chem. Geol. 145, 325-394.
485	Ringwood, A.E., 1994. Role of the transition zone and 660 km discontinuity in mantle
486	dynamics, Physics of The Earth and Planetary Interiors 86, 5-24.
487	Rosenbaum, G., Lister, G.S., Duboz, C., 2002. Reconstruction of the tectonic evolution of the
488	western Mediterranean since the Oligocene, J. Virtual Explorer 8, 107 – 130.
489	Rosenbaum, G., Lister, G.S., 2004. Neogene and Quaternary rollback evolution of the
490	Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides, Tectonics 23, 1-17.
491	Sapienza, G., Hilton, D.R., Scribano, V., 2005. Helium isotopes in peridotite mineral phases
492	from Hyblean Plateau xenoliths (south-eastern Sicily, Italy), Chem. geol. 219, 115-
493	129.
494	Schiano, P., Clocchiatti, R., Ottolini, L., Busà, T., 2001. Transition of Mount Etna lavas from
495	a mantle-plume to an island-arc magmatic source, Nature 412, 900-904.
496	Serri, G., 1990. Neogene-Quaternary magmatism of the Tyrrhenian region: characterization of
497	the magma sources and geodynamic implications, Mem. Soc. Geol. It. 41, 219-242.
498	Serri, G., Innocenti, F., Manetti, P., 1993. Geochemical and petrological evidence of the
499	subduction of delaminated Adriatic continental lithosphere in the genesis of the
500	Neogene-Quaternary magmatism of central Italy, Tectonophysics 223, 117-147.

501	
	Spakman, W., 1991. Delay time tomography of the upper mantle below Europe, the
502	Mediterranean, and Asia Minor, Geophys. J. Int. 107, 309-332.
503	Spakman, W., Van der Lee, S., Van der Hilst, R., 1993. Travel-time tomography of the
504	European-Mediterranean mantle down to 1400 km, Physics of The Earth and
505	Planetary Interiors 79, 3-74.
506	Spakman, W., Wortel, R., 2004. A Tomographic View on Western Mediterranean
507	Geodynamics, in: Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M., Ziegler,
508	P.A., (Eds), The TRANSMED Atlas, The Mediterranean Region from Crust to
509	Mantle, Springer-Verlag, Berlin Heidelberg, pp. 31-52.
510	Stampfli, G.M., Borel, G.D., 2004. The TRANSMED Transects in space and time:
511	Constraints on the Paleotectonic Evolution of the Mediterranean Domain, in: W.
512	Cavazza, F. Roure, W. Spakman, G.M. Stampfli, P.A. Ziegler, (Eds), The
513	TRANSMED Atlas - The Mediterranean Region from Crust to Mantle, Springer,
514	Berlin, Heidelberg, pp. 53-80.
515	Trua, T., Esperanza, S., and Mazzuoli, R., 1998. The evolution of the lithospheric mantle
516	along the N. African plate: geochemical and isotopic evidence from the tholeiitic and
517	alkaline volcanic rocks of the Hyblean plateau, Italy, Cont. Min. Pet. 131, 307-332.
518	Trua, T., Serri, G., M. Marani, P., 2003. Lateral flow of African mantle below the nearby
519	Tyrrhenian plate: geochemical evidence, Terra Nova 15, 433-440.
520	Van de Zedde, D.M.A., Wortel, M.J.R., 2001. Shallow slab detachment as a transient source
521	of heat at midlithospheric depths, Tectonics 20, 868-882.
522	Vollmer, R., 1976. Rb-Sr and U-Th-Pb systematics of alkaline rocks: the alkaline rocks from
523	Italy, Geochim. Cosmochim. Acta 40, 283-295.
524	White, W.M., Albarède, F., Telouk, P., 2000, High-precision analysis of Pb isotope ratios by
525	multi-collector ICP-MS, Chem. Geol. 167, 257-270.

526	
	Wong, S.Y.M., Ton, A., Wortel, M.J.R, 1997. Slab detachment in continental collision zones:
527	An analysis of controlling parameters, Geophys. Res. Lett. 24, 2095-2098 (GeoRL
528	Homepage).
529	Yoshioka, S., Wortel, M.J.R., 1995. Three-dimensional numerical modeling of detachment of
530	subducted lithosphere, Journal of Geophysical Research 100, 20223-20244 (JGR
531	Homepage).

A CERTINAL

532

533 FIGURE CAPTIONS

Fig. 1. Digital Elevation Model of Italy (built from 1 minute gridded GEBCO data) with data location. White squares: this study (data reported in Table 1); black squares: Gasperini et al. (2002). TMP, Tuscan Magmatic Province; RMP, Roman Magmatic Province. The present location of the subduction front (D. Frizon de Lamotte, personal communication) and the European and African plates are indicated.

539

Fig. 2. a) 208 Pb/ 204 Pb vs. 206 Pb/ 204 Pb and b) 207 Pb/ 204 Pb vs. 206 Pb/ 204 Pb with their respective error bars for the studied rocks of Tuscany and the Pontine archipelago. Pontine symbols: black triangles = Palmarola, squares = Ponza (white = rhyolites, grey = trachytic unit). Tuscan (TMP) sample symbols: black bold right cross = Radicofani; circles = Amiata (white = rhyodacites, grey = latites, black = enclaves), white tilted crosses = Roccastrada, black tilted cross = Elba, white diamonds = San Vincenzo samples.

546 TMP and RMP mafic rocks fields are drawn from the database of Peccerillo (2005);
547 Ventotene island data from D'Antonio and Girolamo (1995).

548

Fig. 3. 208 Pb/ 206 Pb vs. 204 Pb/ 206 Pb and 208 Pb/ 204 Pb vs. 206 Pb/ 204 Pb diagrams showing the rocks 549 550 studied relative to the DM and HIMU end-members, the C common component, and crustal 551 reservoirs. Data sources: HIMU data from the GEOROC database (http://georoc.mpch-552 mainz.gwdg.de/georoc/), MAR PETDB data from the database 553 (http://www.petdb.org/index.jsp), C composition from Hanan & Graham (1996), subducted 554 sediments of world's trenches from Plank and Langmuir (1998), and Italian Crust from 555 Gianelli & Puxeddu (1979), Caggianelli et al. (1991), Pinarelli (1991), Boriani et al. (1995), 556 Conticelli (1998), and Conticelli et al. (2002) The first two principal component eigenvectors

557	
	are drawn from the mean value of Pb isotope compositions of Italian magmatic rocks (this
558	study and Gasperini et al., 2002).
559	
560	Fig. 4. ³ He/ ⁴ He (R/Ra) vs. ²⁰⁶ Pb/ ²⁰⁴ Pb covariation of Italian volcanic rocks. Helium data for
561	Italian rocks are extracted from the compilation of Sapienza et al. (2005). Typical MORB and
562	SCLM He isotopic ranges are reported (Farley and Neroda, 1998; Gautheron and Moreira,
563	2002; Hilton and Porcelli, 2003) for reference. Italian crust range is from Conticelli et al.
564	(2002) Italian rocks: same symbols as in Fig. 3.
565	
566	Fig. 5. Cartoon depicting a possible geodynamic model for Italian magmatism (modified after
567	the interpretative model of Spakman and Wortel (2004). For sake of clarity, only the
568	subducting lithospheres have been represented. This model focuses on the slab detachment
569	process and its probable lateral migration toward Calabria and Sicily, the slab tearing would
570	induce decompression triggering vertical fluxes of African mantle from the 670km boundary
571	layer. In the particular case of Sicily, two possibilities have been illustrated based on two
572	hypotheses: 1) the Ionian slab is slightly detached at shallow level (so that the tomography
573	does not detect it) and C material passes through the tear, and/or 2) as suggested by
574	Gvirtzman and Nur (1999), there is a tear at the western edge of Ionian slab (between the
575	Ionian and African plates) which, combined with the slab roll-back and steepening motions

576 trigger suction of the neighbor African asthenosphere.

577

578 TABLE CAPTION

579

- 580 **Table 1.** Lead isotopic compositions for intermediate-silicic rocks from the Tuscan Magmatic
- 581 Province and the Pontine Islands (this study). The location and rock type of the samples are
- 582 indicated. The variable values for component 1 (C1) and component 2 (C2) of the Principal
- 583 Component Analysis are also reported.

584

A CCC AND

EPTED MANUSCRIPT ACC

578

Sample	Locality	Unit	Rock type	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	C1 (99.4%)	C2 (0.4%)
Pontine Ar	chipelago							
83A	Ponza Island	dyke	rhyolite	18.789	15.674	38.979	0.264	0.018
83E	Ponza Island	hyaloclastite	rhyolite	18.807	15.678	38.996	0.214	0.010
83F2	Ponza Island	hyaloclastite	rhyolite	18.803	15.676	38.993	0.224	0.011
83L	Ponza Island	hyaloclastite	rhyolite	18.807	15.678	38.997	0.214	0.009
83M3	Ponza Island	hyaloclastite	rhyolite	18.802	15.676	38.994	0.228	0.010
				18.797	15.669	38.973	0.223	0.026
83N	Ponza Island	dyke	rhyolite	18.783	15.676	38.972	0.284	0.022
				18.778	15.671	38.957	0.285	0.033
83T	Ponza Island	hyaloclastite	rhyolite	18.793	15.667	38.968	0.231	0.028
83R	Ponza Island	Punta della Guardia neck	trachyte	18.766	15.671	38.967	0.337	0.020
83T2	Ponza Island	Mt. Guardia dome	trachyte	18.760	15.665	38.942	0.334	0.039
			8.3	18.757	15.663	38.940	0.341	0.040
83AA	Palmarola Island	hyaloclastite	rhyolite	18.825	15.677	39.038	0.174	-0.020
				18.812	15.663	38.991		
83Z	Palmarola Island	dome	rhyolite	18.810	15.671	39.008	0.201	0.000
Tuscany (T	'MP)							
84AE	Monte Amiata	OLL	trachydacite	18.721	15.678	38.992	0.534	-0.018
84AF	Monte Amiata	OLL	trachydacite	18.723	15.680	38.999	0.534	-0.023
84AH	Monte Amiata	DLC	trachydacite	18.721	15.681	39.003	0.545	-0.027
84AN	Monte Amiata	DLC	trachydacite	18.718	15.681	39.003	0.557	-0.029
84AO	Monte Amiata	DLC	trachydacite	18.716	15.677	38.994	0.552	-0.022
84AV	Monte Amiata	BTC	trachydacite	18.716	15.676	38.987	0.546	-0.016
84AW	Monte Amiata	BTC	trachydacite	18.712	15.674	38.980	0.554	-0.011
84BD	Monte Amiata	BTC	trachydacite	18.716	15.677	38.991	0.550	-0.019
84BE	Monte Amiata	BTC	trachydacite	18.714	15.674	38.977	0.544	-0.008
84AD	Monte Amiata	magmatic enclave	trachyandesite	18.730	15.679	39.003	0.509	-0.024
84AM	Monte Amiata	magmatic enclave	basaltic trachyandesite	18.731	15.678	39.002	0.503	-0.023
				18.724	15.671	38.978	0.503	-0.005
84AQ	Monte Amiata	magmatic enclave	trachyandesite	18.733	15.678	39.000	0.494	-0.021
84BH	Radicofani		basaltic andesite	18.694	15.680	39.017	0.656	-0.049
				18.687	15.669	38.975		
84V	Roccastrada		rhvolite	18,725	15.679	38,978	0.510	-0.004
84X	Roccastrada		rhyolite	18.732	15.685	38.992	0.502	-0.014
TOS10	San Vincenzo		rhyolite	18.739	15.685	38.948	0.444	0.027
			1107412-9916	18.742	15.688	38.954	0.441	0.023
TOS11	San Vincenzo	Botro ai Marmi	aplite	18.764	15.704	38.954	0.381	0.032
				18.768	15.708	38.969	0.382	0.020
FI B7	Elba Island	Monte Cananne	rbvolite	18 751	15 688	38 963	0.414	0.018
1	Liva istalid	brome Capainie	inyonte	18 746	15 682	38 944	0.411	0.033
				19.75	10.002	50.74	0.411	0.000
mean value				18.753	15.677	38.982		
std deviation				0.038	0.009	0.022		

Table 1. Pb isotope compositions for intermediate-silicic rocks from the islands of Ponza and Palmarola (Pontine Archipelago) and Tuscany

C1, C2: 1st and 2nd Principal Components obtained after PCA of Pb isotopic data of this study and those of Gasperini et al. [6].

BTC = Basal Trachydacitic Complex; DLC = Domes and Lava flows Complex; OLL = final Olivine Latitic Lava Flows

Longitude (°E)

Figure 1 Cadoux et al., 2007

Figure 2 Cadoux et al., 2007

Cadoux et al., 2007

Figure 4 Cadoux et al., 2007

