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RAbstract

One paradigm of subduction relates the dip of the slab to the buoyancy of the downgoing lithosphere along subduction

zones, with the negative buoyancy proportional to the age of the oceanic lithosphere. We measured the dip of the slab down to

depths of 250 km along 164 sections crossing 13 subduction zones and compared it with the age of the subducting oceanic

lithosphere both at the trench and at depth. We show here that this relationship is far more irregular than previously suggested,

and that it is not possible to simply correlate the increase of the slab dip to the increasing age of the downgoing cooler

lithosphere. Younger oceanic lithosphere may show steeper dip than older segments of slabs (e.g., Central America vs. South

America), in contrast with predictions of models considering only slab pull. The combination of slab age and subduction rate

better accounts for slab dip; however the correlation is not satisfactory (correlation coefficient equal to 0.450). These results

suggest that supplemental forces or constraints have to be accounted for, such as thickness and shape of the hangingwall plate,

absolute plate velocity, presence of lateral density variations in the hosting upper mantle, effects of accretion/erosion,

subduction of oceanic plateaus and slab deformation due to the motion of the mantle relative to the subducting plate.

D 2005 Published by Elsevier B.V.
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NCO1. Introduction

During the last 20 yr, the idea that the slab pull is

primarily driving plate tectonics [1,2] has dominated

our view of subduction. This stems from the fact that

the cooler subducting lithosphere is heavier than the
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underlying mantle and it is assumed to drag the

attached plate. This is consistent with the observation

that plate motions are faster where there are longer

subduction zones [3].

It has been demonstrated that the dip for a rigid

slab would be controlled by a balance between the

downward torque on the slab due to the weight of the

slab and the upward torque on the slab due to the

hydrodynamic forces from the induced corner flow in

the viscous mantle surrounding the slab [4,5]. These
etters xx (2005) xxx–xxx
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Fig. 1. Traces of the analyzed trench-perpendicular cross sections. The plate ages [15] and the extent of slabs described by the RUM project [10]

are shown. Red isolines of the top of the slabs drawn every 100 km. Panels A–M show enlargements of analyzed subduction zones: (A)

Caribbean; (B) Philippines; (C) Central America; (D) Marianas–Japan; (E) Eastern-Central Aleutins; (F) Sandwich arc; (G) South America; (H)

Indonesia; (I) Cascades; (J) Kuril; (K) Tonga–Kermadec; (L) New Hebrides; (M) Ruykyu.
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authors concluded that, because the buoyancy of the

slab is proportional to its age, the dip of slabs com-

posed of younger seafloor would be shallower. Such a

view was shared by other studies, generally consider-

ing only the South America subduction zone [6–8].

Performing a statistical study on the factors control-

ling subduction zone geometry, considering subduc-

tion zones worldwide, Jarrard [9] concluded that the

correlation between slab age and dip is negligible.

Notwithstanding this conclusion, in Earth sciences

literature it is still widely accepted that old and

heavy (i.e., characterized by larger negative buoy-

ancy) oceanic lithosphere exerts a larger down pull

and thus determines a steeper slab dip.

The results of the pioneer study of Jarrard [9] had

no later systematic control. Although the ages of

ocean floor were well known in the mid-1980s, the

deep geometry of subducting slabs was less con-

strained. Geophysical techniques, mostly tomography
and seismological studies, have greatly improved our

knowledge on mantle geometry since Jarrard’s [9]

study. Recently, the Regionalized Upper Mantle pro-

ject (RUM; [10]) provided a worldwide image of

subducting slabs, which constitutes a uniform data-

base to check the results of Jarrard [9]. We performed

this check on the 13 subduction zones shown in Fig.

1. The results exposed in this work do not support the

scenario of a direct age control on the slab dip, in

agreement with Jarrard’s [9] findings.
2. Data and method

The following 13 subduction zones were consid-

ered: Caribbean, Philippines, Central America, Mari-

anas–Japan, Eastern-Central Aleutins, Sandwich arc,

South America, Indonesia, Cascades, Kuril, Tonga–

Kermadec, New Hebrides, Ruykyu (Table 1). For the
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t1.1 Table 1

List of subduction zones and data analyzed in this studyt1.2

Subduction zone Number of

sections

Quality and provenance

of slab dip data

Quality and provenance

of slab age data

Availability of slab

age at deptht1.3

Caribbean 10 High; [10] High; [15] Yest1.4
Philippines 8 High; [10] High; [15] Yest1.5
Central America 12 High; [10] High; [15,16] Yest1.6
Marianas–Japan 32 High; [10] High; [15,17] Yest1.7
Aleutins 17 High; [10] High; [15] Yest1.8
Sandwich Arc 12 High; [10] High; [15] Yest1.9
South America 30 High; [10] High; [15] Yest1.10
Indonesia 9 High; [10] High; [15] Yest1.11
Cascades 3 Low; [14] High; [15] Yest1.12
Kuril 5 High; [10] Low; manual extrapolation from [15] Not1.13
Tonga–Kermadec 11 High; [10] Low; manual extrapolation from [15] Not1.14
New Hebrides 6 High; [10] Low; [18] Not1.15
Ruykyu 9 High; [10] Low; manual extrapolation from [15] Not1.16
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first eight subduction zones both ocean floor ages at

the trench and detailed information on slab geometry

are available. In the Cascades the geometry of the slab

is only poorly known due to the lack of subcrustal

seismicity but the knowledge of the age of the litho-

sphere entering the trench is precise. For the latter 4

subduction zones the slab geometry constraints are

good, whereas the age constraints are rather loose.

Other subduction zones, such as the Aegean and

the Italian arcs, had to be neglected due to the com-

plete lack of age constraints. Subduction zones where

continental collision occurred, such as Ontong Java,

were also neglected. Finally we excluded subduction

zones with trenches parallel to plate convergence,

such as the Western Aleutins and Western Indonesia.

All the data acquired for the 13 subduction zones

are provided in 26 tables as Background Data Set.

2.1. Slab dip

Using the GMT software [11] we constructed 164

mantle-scale cross sections of the slabs subducting in

the 13 subduction zones (Fig. 1).

The sections shown in Fig. 1 are perpendicular to

the trench (as in [9]). This allowed the measurement

of the true dip of the slabs. This choice is justified by

the fact that, in the case of convergence oblique to the

trench, the strain is partitioned in trench-parallel and

trench-perpendicular components (e.g., [12] and refer-

ences therein for Central America). For most of the

sections the angle between the section trace and the
ED P
Rplate convergence vector is less than 458. For only 22

sections (indicated by black squares rather than by

circles in Fig. 4) this angle is between 458 and 678.
At the same trench locations the slab dip was also

measured along sections parallel to the plate conver-

gence vector. It is emphasized however that such

measures provide apparent dips, constantly lower

than the true dip. The difference between apparent

and true dip increases with the angle between the plate

convergence and the trench-perpendicular direction.

The slab geometries used are those provided by the

RUM project (http://wwwrses.anu.edu.au/seismology/

projects/RUM; [10]), built on contouring of slab-

related seismicity from the relocated catalogue of

Enghdal et al. [13] and of the International Seis-

mological Centre catalog (http://www.isc.ac.uk). The

contours (Fig. 1) trace the top of slabs occurring

worldwide. Only for the Cascades subduction zone,

not considered by the RUM project, information on

the shallow portions of the slab were taken directly

from earthquakes reported in the Enghdal et al. [1998]

catalogue whereas the dip of the slab at depths deeper

than 50 km was taken from a local tomography study

[14].

Average slab dips were measured, when possible,

for the following depth ranges: 0–50, 50–100, 100–

150, 150–200, and 200–250 km. The average (from 0

to 250 km depth) dip Dav was also calculated. The

slab dips were plotted either against the age of the

lithosphere entering the subduction zone (Figs. 2 and

3) or either against distance (in km) parallel the sub-

http://wwwrses.anu.edu.au/seismology/projects/RUM
http://www.isc.ac.uk
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Fig. 2. Age vs. slab dip plots for 5 different depth ranges, with data measured along sections perpendicular to the trench.
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age of the subducting lithosphere has been also

plotted so to check the dip–age relationship.

2.2. Slab age

The plate ages (At) of the oceanic lithosphere

entering nine subduction zones (Caribbean, Philip-

pines, Central America, Marianas–Japan, Eastern-Cen-

tral Aleutins, Sandwich arc, South America, Indonesia,

Cascades) were taken from the GMT globala-

ge_1.6.grd file, based on the work by Mueller et al.

[15], which was integrated with data from Protti et al.

[16] for the Central America zone and from Nakanishi

et al. [17] for the Japan zone.

For the Kuril, Tonga–Kermadec and northern Ruy-

kyu subduction zones no information on the age of the

lithosphere entering the trench is provided by the
Mueller et al. [15] database. Following Heuret and

Lallemand [18], the ages at these trenches are extra-

polated from the nearest magnetic anomalies. For the

New Hebrides we adopt the ages reported in [18].

Such a procedure, however, introduces a wealth of

arbitrariness in the measurements and the ages have to

be considered with caution.

For nine subduction zones (Caribbean, Central

America, South America, Philippines, Marianas–

Japan, Indonesia, Eastern-Central Aleutins, Sandwich

Arc, Cascades) we calculated the age of the slab at

various depths (50, 100, 150, 200, 250 km) using the

same relationship of Jarrard [19,9]: Ad=At +L(dA /

dL�1 /Vs), where Ad is the age at depth, At is the age

of the lithosphere entering the trench, Vs is the velocity

of subduction (i.e., convergence rate plus eventual

backarc opening; see next section), L is the length of

the slab from the trench to the considered depth and
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Fig. 3. Age vs. slab dip plots for 5 different depth ranges, with data measured along sections parallel to the plate convergence vector.
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dA / dL is the age gradient of the slab, measured in the

lithosphere approaching the trench. The age gradient

dA / dL is averaged over a distance of 250 km from the

trench parallel to the convergence vector. The calcu-

lated age is not the present age of the slab at the

considered depth, but rather the age of that part of the

slab when it first entered the subduction zone.

The choice of limiting the age calculation to these

nine subduction zones is due to the fact that only for

these zones direct information on the age of the litho-

sphere entering the trench is available. For the four

remaining subduction zones the calculation of dA / dL

without precise age information for the lithosphere

approaching the trench would have been extremely

speculative.

There is a high degree of uncertainty of the age-

at-depth calculation procedure. The uncertainty mainly
derives from the determination of dA / dL, clearly

controlled by the crossing of transform faults, espe-

cially in zones where transforms are markedly obli-

que to the convergence vector (e.g., South America,

Sandwich and Caribbean subduction zones). More-

over, the age gradient at depth could be different

from that of the lithosphere approaching the trench

and the constraints on the velocity of backarc open-

ing are usually quite loose. Finally, the velocity of

convergence and backarc opening may largely vary

through time (e.g., the backarc opening of the Ma-

rianas [20]).

2.3. Subduction velocity

For each profile, the convergence velocity Vc (both

azimuth and magnitude) was calculated using the
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Fig. 4. Distance (along the subduction zone) vs. slab dip plots for the 13 analyzed subduction zones. Data were measured along sections

perpendicular to the trench. The age (Myr) of the lithosphere entering the trench (At) is plotted. The age of the subducted lithosphere at depth is
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rotation poles of the NUVEL1A model [21]. No plate

convergence estimates are provided for the New Heb-

rides subduction zone, because no information on the

velocity of the subducting plate is available from the

NUVEL1A model. The component of convergence

rate parallel to the sections was also calculated. The

velocity of backarc opening Vb was evaluated from

the literature in order to calculate the subduction

velocity Vs that enters the calculation of the age at
depth. Vs is equal to Vc+Vb (i.e., convergence rate

plus, possibly, backarc opening). Vb=20 mm/yr is

evaluated for the Caribbean [22] and Vb=50 mm/yr

for the Sandwich arc [23]. Vb in the backarc of the

Marianas subduction varies from 20 mm/yr in the

northern part to 47 mm/yr in the south [20]. A pro-

gressive linear increase between the two rates is

assumed for the Marianas sections. The backarc open-

ing of the Japan subduction is inactive [24] and the
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backarc area is subject to shortening rather than to

extension. Vb=�25 mm/yr [25] is used in our calcu-

lations for the Japan subduction. For the Tonga–Ker-

madec a Vb of 160 mm/yr is assumed, as measured in

the Lau basin [26].

Along the Indonesian subduction zone, backarc

extension is localized in the northwestern segment

of the arc, i.e., in the Andaman Sea [27], where

about 3 mm/yr of N–S extension are measured [28].
No backarc opening is observed in the remaining

portions of the Indonesia subduction zone [28] and

Vb=0 is assumed for these areas. Vb=0 is assumed

also for Central America, South America, Cascades,

Philippines because these subduction zones are not

bordered by backarc basins [24]. Finally Vb=0 is

assumed for the Aleutins and Kuriles since they are

bordered by a backarc basin inactive since the Cretac-

eous [24].
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Fig. 6. Average dips are plotted against the results of the Jarrad’s [9,19] relationship. The symbols are as in Figs. 2 and 3. Plots are shown for all

the subduction zones (except the New Hebrides) and for the 8 best-constrained zones (Caribbean, Philippines, Central America, Marianas–

Japan, Eastern-Central Aleutins, Sandwich arc, South America, Indonesia).
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lized to calculate the slab age at depth. Moreover they

were used to check the hypothesis that Dav=41.7+

0.17 d At�0.23 d Vc (Fig. 6). According to Jarrard

[9,19] this empirical relationship provides the best

correlation between dip, age and subduction velocity.

Finally we consider the variations in slab dip as a

function of the thermal parameter T (Fig. 7), calculated

as the product of the slab vertical descend rate Vv and

the age of subducting lithosphere: T=Vv d At.
U 259
260
261
262
263
264
3. Results and discussion

The slab dip vs. age graphs for different depth

ranges (Figs. 2 and 3 for trench-perpendicular and
for convergence–parallel sections respectively) were

produced to identify a worldwide relationship

between age and slab dip. If a direct function between

these two parameters existed, the plotted symbols

should approximately follow an increasing trend.

Such a trend is not recognized both at global scale

or within single subduction zones. For example, at

global scale the Marianas–Japan zone, although char-

acterized by the oldest ages, shows slab dips compar-

able or lower to those of the youngest slab (Sandwich

arc). A second worldwide result is that, at least in the

0–150 km depth range, west-directed zones (red sym-

bols) generally show, for comparable slab ages, stee-

per geometries than east or northeast-directed zones

(green symbols). However, a few notable exceptions

occur, such as the New Hebrides slab showing dips
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comparable or steeper than the same-age west-direc-

ted zones. However, it has to be recalled that the age

constraints for the New Hebrides subduction zones are

quite loose. A second exception is provided by the

Central America slab, which is steeper, in the 150–

250 km range than the same-age west-dipping slabs.

Analysing single subduction zones in Figs. 2 and 3,

increasing age–dip trends are not generally recog-

nized, with the exception of the Marianas–Japan and

E-Aleutians zones. On the contrary, a decreasing age–

dip trend is recognized for the South America sub-

duction in the 50–200 km depth interval and for the

Kuril and Tonga–Kermadec (whose slab ages are

however poorly constrained) subduction zones in the

150–250 km interval. Constant dip–age trends are

recognized for the Indonesia, Sandwich Arc and Car-

ibbean (constant in Fig. 2 and decreasing in Fig. 3)

subduction zones. It is finally stressed that these con-

siderations hold for both trench-perpendicular and

convergence–parallel sections, because Figs. 2 and 3

differ only slightly.

Figs. 4 and 5 show the dip and age trends along

trench of all the analyzed slabs for trench-perpendi-

cular and for convergence–parallel sections respec-

tively. Because Figs. 4 and 5 show very similar

trends, although different in details, the following

observations are valid for trench-perpendicular and

for convergence–parallel sections. For nine sections,

ages at the trench and at 250 km depth (with the
ED Pexception of the Sandwich arc, where the considered

depth is 200 km) are shown. The two ages generally

show similar trends with the only exception of the

Aleutians, where the trends are significantly different.

Therefore the following considerations, if not speci-

fied, hold for age both at the trench and at depth. The

trends of ages at depth are generally smooth and

mimic the trends of ages at the trench. Singularities,

such as at 1270 km distance in the Marianas–Japan or

at 2900 and 3300 km distances in the South America

panels, are due to measurements of anomalous age

gradients along sections crossing transform faults.

It is immediately noted that the slab dip does not

necessarily increase steadily with depth, as for exam-

ple in the Central America, South America, Marianas–

Japan, Caribbean, Kuril, Tonga–Kermadec, New Heb-

rides and Ryukyu subduction zones. This observation

seems to contradict the prediction of slab pull models.

A downpull should, as a matter of fact, determine a

steady increase of dip with depth [29,30]. The

observed irregular shape of the subducting slabs

appears to be controlled by other factors. A potential

candidate for the upper 250 km could be the shape and

thickness of the overriding plate. Oblique and lateral

subduction zones with respect to the direction of

convergence show generally steeper slabs (e.g. in

central Southern America).

In the South America subduction zone, slab dip is

direct function of age only for the central sector of the
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subduction zone, whereas in the southern part an

inverse function is displayed. An overall direct func-

tion of age at the trench and dip occurs in the Eastern

Aleutians, whereas in the Central Aleutians (i.e. for

distances greater than 1000 km) dips increase while

age at the trench remains constant. The age at 250 km

depth slightly diminishes from east to west. Therefore,

an inverse function occurs between age at depth and

slab dip. In the Sandwich arc no increase of slab dip

corresponds to a pronounced south to north increase

of slab age. In Central America, the slab dip is direct

function of age only in the southern part, whereas in

the northern part a slight decrease of age corresponds

to an increase of dip. In the Philippines a constant slab

age is accompanied by a decrease of slab dip from

north to south for most of the depth ranges. The

pattern in the Marianas–Japan subduction is more

complicated. A general decrease of slab age from

south to north is generally accompanied by a decrease

of slab dip. However, exceptions to this rule are

observed in the southern part. The Caribbean subduc-

tion zone shows minimum slab ages in the central part

and a significant increase of age both to the N and to

the S, while the slab dip is fairly constant throughout

the entire subduction zone. The south Indonesia sub-

duction zone also shows rather constant slab dips that

are not direct function of the slab age, which

decreases from the NW and SE edges of the subduc-

tion zone towards the center. The Cascades and New

Hebrides subduction zones show constant age trends

and corresponding constant dip trends. In the Kuriles,

age is constantly and significantly decreasing (some

35 Myr) from SW to NE, whereas dips remain quite

constant. In the Tonga–Kermadec subduction, a slight

increase of age (ca. 10 Myr) is not matched by the slab

dip, which shows a decreasing trend, if any. Finally in

the NE part of the Ryukyu subduction zone, a 40 Myr

increase of age does not correspond any significant

slab dip variation.

In summary, seven subduction zones (Sandwich

arc, Philippines, Caribbean, Indonesia, Kuriles,

Tonga–Kermadec and Ryukyu) show geometries that

are opposite to those predicted by slab pull models,

three (Marianas–Japan, Cascadia and New Hebrides)

show consistent geometries and the remaining two

(South America and Central America) show inter-

mediate characters. Finally, the Aleutins show inter-

mediate character when the age at trench is considered
ED P
ROOF

and a character similar to the first seven zones when

age at 250 km depth is considered.

In Fig. 6 the average dips are plotted against the

results of the Jarrard’s [9,19] relationship 41.7+0.17 d

At�0.23 d Vc and the corresponding correlation coef-

ficients are provided. The New Hebrides subduction

was excluded from these calculations because no

information on the convergence rate is available. If

the relationship were valid, the symbols should align

along a line at 458 starting from the origin. In Fig. 6

the data are quite scattered indicating that the rela-

tionship is not valid for the new data here presented.

This is confirmed by the low correlation coeffi-

cients. The largest value (0.450) is far lower than

the value (0.717) obtained by Jarrard [9,19]. It has

to be noted that Jarrard [9,19] himself doubted the

validity of the relationship, suggesting that the

obtained high correlation coefficient may only be a

coincidence.

Finally, in Fig. 7 we plot average dip against

thermal parameter (T=Vv d At; once again the New

Hebrides subduction is excluded). This latter value

is a simple way of estimating the overall tempera-

ture structure of the deep slab (i.e., larger thermal

parameters correspond to cooler slab temperatures)

and it is normally correlated to the maximum depth

of seismicity within slabs. When all the data are

considered, the correlation between slab dip and

thermal parameter is weak. However two major

trends can be recognized. The first is steeper and

comprises most of the subduction zones. The second

is less steep and is made by data from the Mari-

anas–Japan and Tonga–Kermadec subduction zones.

This seems to indicate a thermal control on slab dip,

i.e., cooler slabs may be steeper. Theoretically a

thick old slab is more dense but, at the same time,

stiffer and harder to bend. Fig. 7 suggests that the

effect of temperature on density prevails on its effect

on rheology. However, slab buoyancy at depth does

not simply depend on age and subduction velocity,

but it is influenced by lithosphere warming and

phase changes.
4. Conclusions

The evidence presented in this paper casts some

doubt on the effectiveness of the slab pull, as indi-
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cated also by the down-dip compression occurring in

several slabs [31,32].

A simple linear relation between slab dip and age

of the downgoing oceanic lithosphere does not exist.

A combination of slab age and subduction velocity

correlates better with slab dip, but is still not satis-

factorily (correlation coefficient equal to 0.450).

These results suggest that supplemental forces to

the negative buoyancy of the slab have to be con-

sidered. Plate kinematics (absolute motion of upper

plate [33,34]) could play a role, but other aspects

have to be taken into account. The first one is the

presence of lateral density variations in the hosting

upper mantle, allowing different buoyancy contrasts

with the downgoing slab. However, apart from pro-

ven lateral heterogeneities in mantle tomography,

there is no evidence yet for such large anisotropies

in composition in order to justify sufficient density

anomalies in the upper mantle. The effect of latent

heat released by phase transitions could, moreover,

alter the thermal distribution and buoyancy of sub-

ducting slabs and control their dips [35]. Another

parameter possibly controlling the dip of the first

250 km could be the thickness and shape of the

hangingwall plate, i.e., the thicker the hangingwall

plate, steeper the slab. Still at shallow depths, the

effects of accretion/erosion [36,37], the thickness of

sediments in the trench and the subduction of ocea-

nic plateaus [38] could influence the geometry of the

descending lithosphere. Another basic controlling

factor could be operated by resistance forces induced

by the motion of the mantle relative to the subduct-

ing plate [39,40]. According to Hager and O’Connell

[41] the dip of the subduction zones is controlled by

the return flow of the mantle produced by the plate

motion rather than by slab density contrast. The lack

of a clear correlation between the observed dip angle

of slabs and plate velocity and slab age in modern

subduction zones has been explained with the

hypothesis that subduction is a time-dependent phe-

nomenon [42].
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