
T H E  D I S P E R S I O N  OF S U R F A C E  WAVES ON 
M U L T I L A Y E R E D  M E D I A *  

By N. A. HASKELL 

ABSTRACT 

A matrix formalism developed by W. T. Thomson is used to obtain the phase velocity disper- 
sion equations for elastic surface waves of Rayleigh and Love type on multilayered solid media. 
The method is used to compute phase and group velocities of Rayleigh waves for two assumed 
three-layer models and one two-layer model of the earth's crust in the continents. The computed 
group velocity curves are compared with published values of the group velocities at various 
frequencies of Rayleigh waves over continental paths. The scatter of the observed values is 
larger than the difference between the three computed curves. I t  is believed that not all of this 
scatter is due to observational errors, but probably represents a real horizontal heterogeneity 
of the continental crusts. 

INTRODUCTION 

IN THE usual t rea tment  I of the dispersion of surface waves of Rayleigh type on a 
layered medium, the dependence of phase velocity upon wave length is expressed 
by  the vanishing of a certain determinant  whose elements are functions of the phase 
velocity, the wave length, and the densities and elastic moduli of the various layers. 
If  there are n layers (including the last, which is assumed to be semi-infinite), there 
are 4n - 2 boundary  conditions to be satisfied: continuity of two displacement 
components and two stress components a t  each interface, and vanishing of two 
stress components at  the free surface. These lead to 4n - 2 homogeneous simul- 
taneous equations to determine an equal number  of unknown constants. A solution 
exists only if the determinant  of the coefficients vanishes. Although m a n y  of the 
elements of this 4n - 2 rowed determinant  are zero, the computat ional  labor in- 
volved in determining the roots is so formidable tha t  no a t t empt  appears  to have 
been made to t reat  eases of more than two layers by  this method.  

In  the present paper  the problem is reformulated in terms of matrices, following 
a method introduced by  W. T. Thomson. 2 Although this m a y  be regarded as no 
more than  a change in notation, the matr ix  notat ion itself suggests a systematic 
computat ional  procedure tha t  makes  it possible to handle at  least a three-layer case 
on an ordinary desk calculator without  an unreasonable expenditure of time. 

In  the case of Love waves there are only two boundary  conditions to be satisfied 
at  each interface, and the throe-layer problem can be t reated by  straightforward 
methods without  excessive algebraic manipulation. However, for more than three 
layers the matr ix  method m a y  be advantageous in this case also. 

In  order to simplify the discussion as far as possible, we shall consider solutions 
of the elastic equations of motion in the form of plane waves rather  than  a t t empt  to 
t reat  the more complex case of waves diverging from a point source. So far as the 
dispersion function is concerned, this involves no loss of generality, since the point-  

* Manuscript received for publication June 5, 1951. 
1 K. Sezawa, "Dispersion of Elastic Waves Propagated on the Surface of Stratified Bodies and 

on Curved Surfaces," Bull. Earthq. Res. Inst. Tokyo, 3:1-18 (1927), esp. p. 16; A. W. Lee, "The 
Effect of Geological Structure upon Microseismic Disturbance," Mon. Not. Roy. Astron. Soc., 
Geophys. Suppl., 3:83-105 (1932); C. Y. Fu, "Rayleigh Waves in a Superficial Layer," Geophysics, 
11:10-23 (1946). 

2 W. T. Thomson, "Transmission of Elastic Waves through a Stratified Solid Medium," Jour. 
Appl. Phys., 21:89 (1950). 
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source solution may be developed by integration of plane-wave solutions. The plane- 
wave solution will not, of course, determine the way in which the relative excitation 
of the various possible normal modes of propagation varies with depth of source and 
with frequency. 

MATRIX FORMULATION OF THE PROBLEM FOR RAYLEIGI-I WAVES 

Since there is an easily corrected error in Thomson's development, we shall repeat 
his derivation in some detail, with certain minor changes in notation that will exhibit 
the basic symmetry of the final expressions somewhat more clearly. 

We consider plane waves of angular frequency p and horizontal phase velocity c 
propagated in a semi-infinite medium made up of n parallel, homogeneous, isotropie 
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Fig. 1. Direction of ~xes and numbering of layers and interfaces. 

layers. For the present, all layers will be assumed to be solid; the ease of a fluid layer 
will be considered later. The x axis is taken parallel to the layers with the positive 
sense in the direction of propagation. The positive z axis is taken as directed into 
the medium. The various layers and interfaces are numbered away from the free 
surface, as shown in figure 1. We confine our attention to waves of Rayleigh type, 
by which we mean that there is no displacement in the y direction and that the 
amplitude diminishes exponentially in the + z  direction in the semi-infinite layer. 

For the ruth layer let 
pm = density 
dm -- thickness 

X~, t~m -- Lain6 elastic constants 
am = [ (Xm + 2t~m)/pm] 1/~ --__ velocity of propagagion of dilatational waves 

tim = [ ~ m / p ~ ]  ~/~ = velocity of propagation of rotational waves 
k = p / c  = 2~r/wavelength (horizontal) 

+ [ (C/a~)  ~ - -  1]1/2C > ~m 
r a m  = - i [ 1  - (c/~)~]~l~ c < ~m 

+[(c/fire) ~ - -  1]t/2c >~m 
r[Jm = - i [ 1  - (c/~m)~],~c < ~m 
~ = 2 ( ~ / c )  ~ 

u, w = displacement components in x and z directions 
= Z~ = normal stress 

r = X~ -- tangential stress 
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Then, as is well known, periodic solutions of the elastic equations of motion for the 
mth layer may be found by  combining dilatational wave solutions. 

= = At ?t A,  (Ou/Ox) -~ (Ow/Oz) exp [i(pt -- kx)] [ ~ exp (--it~r~,~z) + A ,  exp (ikr~z)] 
(2.1) 

With rotational wave solutions, 

~m= (1/2)[(Ou/Oz)-(Ow/Ox)] = exp [i(pt-kx)] [ ~  exp ( , i k r ~ z ) + ~  exp (ikr~,~z)] 
(2.2) 

where a,J ,  Am !!, ~m' and ¢~'! are constants. With the sign conventions defined 
above, the term in h~ ! represents a plane wave whose direction of propagation makes 
an angle cot -~ r ~  with the + z  direction when r ~  is real, and a wave propagated 
in the + x  direction with amplitude diminishing exponentially in the + z  direction 
when r ~  is imaginary. Similarly, the term in A~ !~ represents a plane wave making 
the same angle with the --z direction when r .... is real and a wave propagated in 
the + x  directionwith amplitude increasing exponentially in the + z  direction when 
r ~  is imaginary. The same remarks apply to the terms in ~ !  and ¢~!~ with r ~  
substi tuted for r~ .  

The displacements and the pertinent stress components corresponding to the 
dilatation and rotation given by  (2.1) and (2.2) are, 

u = - ( ~ / p ) ~ ( o A m / O x )  - 2@~/p) ' (oo,~/o~)  (2.3) 

= - ( ~ / p ) ~ ( o ~ / O z )  + 2 ( ~ , J p ) ~ ( o ~ / O x )  (2.4) 

= pm[a,~A~ -]- 2fl,~2{(a~/p)~(O2Am/Ox 2) --1- 2(~,Jp)(O2o~/OxOz)}] (2.5) 

.r = 2pm~2E-(~m/p)2(a2/x~/OxOz) + (~/p)~{(o2~,~/Ox 2) - (o2~,~/Oz~)}] (2.6) 

The boundary conditions to be met at  an interface between two layers are that  these 
four quantities shall be continuous. Continuity of the displacements is assured if 
the corresponding velocity components ~ and ~ are made continuous and, since 
c is the same in all layers, we may take the dimensionless quantities it/c and ~/c  to 
be continuous. Substituting the expressions (2.1) and (2.2) in equations (2.3) to 
(2.6) and expressing the exponential functions of il~rz in trigonometric form~ we find 

2 r i i .  . r ~ r .  it/c = -(am~c) [(Am -}- ~) cos kr~mz - z(Am - ,~) sin/sr~z] 

• ? !I 
--%.r~m[(~'. -- ~'~) cos kr~mz -- ~(~m -F ~.,) sin kr~mz] (2.7) 

2 I Art. Ar ~ t .  @/c = --(am/c) r,m[--i(A,~ + ,~) sin kr.~z + ( ~ -- , )  cos kr.,z] 

~- %~[-- i (~ -- ~ )  sin kr~mz + ( ~  + ~ )  cos kr~z] (2.8) 

2 I - -  All" = - P ~ m ( ~ m  -- I)[(~m + ~ )  COS kromz --  i(A'~ ,~) sin kr~z] 
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. ¢ t l  . 
(2.9) 

• ),  , ! t r  

r = pma~%~r,m[--~(A~ -k A,,) sin kr,mz + (A:, -- A:) cos kr~g] 

--pmc~,~('~,~ -- 1)[--i(w'~ -- ~o~) sin kr~mz q- (o~ -k ¢o~) cos kr~,~] (2.10) 

When any of the r's are imaginary, the trigonometric functions are to be understood 
as going over into the corresponding hyperbolic functions. 

Placing the origin of z at  the (m - 1) ~h interface, the linear relationship be- 
tween the values of iz/c, iv/c, (~, and r at  the (m - 1) th interface and the constants 
(Z~' A- A~"), ( ~ '  - A~"), (co~' -- ~oJ'), and (w.,' -4- ~o~") may be represented 
by the transformation 

T ! .tl ! ~ !  f t !  I I f  (O~n-1/C, 6m--1/C, ~Tm-lTm-1) = ~ m ( A m  ~-  Am, Am - -  m, OJm - -  OJm, OJm -~  03m) (2.11) 
where E~ is the matrix 

- 

0 
E r a  --- 

2 

0 

0 -- 3'~r~ 0 [ 

1 

o 

0 -- p~c~3,,~rz,~ 0 

p,~a,,~2q/,~r~,~ 0 -- pmC23Z~('ym -- 1) 

(2:12) 

Setting z = d~ in equations (2.7) to (2.10) gives the values of i~/c etc. at  the mth 
interface in terms of zX~' -/-A~" etc. 

(i~,~/c, iota/c, ~,~, rm) = D,~(A'~ -b A'~, A'm -- A"m, ~'  -- o~m," co~' --k ~om)" 

where D~ is the matrix 

( 2 . 1 3 )  

D~ 

I 
- -  (oe~ /c )  2 cos  P m  i ( a , ~ / c )  ~ s in  P.~ 

i(am/c)2r~m sin P,~ -- (am/c)2r~ cos P~ 

- p.~a,~(~,.~-- 1) cos P,~ ipmO~raS(3"m - -  1) sin Pm 

- -  i p m a ~ 2 7 ~ r a m  sin Pm p ~ , ~ r ~  cos P~ 

with P m =  kr.mdm and Q,~ = kr~md,~. 

-- vmr~ cos Qm i~',~rBm sin Q,~ 1 
! 

- i~,m sin Q~ ~m cos Q~ 
! 

- -  pmC~m2r~m COS Q~ ipmc~Tm~r~m sin Q~ [ 
i 

ip~c2,y~(~,~ -1) sin Q~ -p,w~'y~(v~ -1) cos Q~_J 

(2.14) 

The constants Ad -k Am" etc. may be eliminated between equations (2.11) and 
(2.12), giving a linear relationship between the values of iz/c, iv~c, ~, and r at the 
top and bottom of the mth layer that  may be expressed symbolically by the equation, 

-1 . r -l) ( 2 . 1 5 )  (iz,~/c, ivy/c,  ~m, r~) -- DmEm (i~m_~/c, @~_I/C, ~r~_~, 
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where E,n -I is the inverse of E~ and is given by 

- -  2 ( ~ / c ~ )  2 0 (p=a,,,~) -~ 0 

o ¢~(~,n-  i)/,~m~r,,,n o (pm~,,,~r,,,,,) - '  

(",/,n - -  1 ) / ~ , n  0 -(pmc2"y=r~.~) - '  0 

_ 0 1 0 (pmC2~/m) -1 

Era 1 ,~ 

21 

(2.16) 

From equations (2.14) and (2.16) the elements of the matr ix  product a,n = DmEm -~ 
m a y  be computed as follows: 

(am)~ = ,,n cos  P ~  -- (,,n - 1) cos Qm 

(am)1~ = i[(Tm -- 1)r[~ sin P,n + 7mr~,n sin Qm] 

(a=)l~ = - (p=c~)-~(cos P ~  - cos 0 2  

(am)~4 = i(pmC2)-'(r-~ sin P ~  + r~,n sin q,~) 

(a,~)21 --i['y,nr~,~ sin P,~ --F (~,~ -1 • = - -  1 ) r ~  s m  Q~]  

(a~)~2 = - ( ~  - 1) cos P~ -~ ~ cos Q~ 

(am):~ = i(p=c~)-'(ro,~ sin p,n + r;~ sm q,n) 

(a,~)~ = (am)~ 

(am)31 = p,~c~,~(~,,n- 1)(cos P ~ -  cos Q,n) 

2 - 1  • 2 (a,~)32 = ip,nc2[(%, --  1) r~,n sm P,n -t- ~,nr~ sin Qm] 

(am)~ = (am)~ 

(am)~ = (am),~ 

(a~)~  = i p ~ [ ~ r o , n  s i n p =  + (~,n - 1)~r~ s in O,n] 

(am)~ = (am)~l 

(am)~ = (am)~, 

(a=)~  = (a~), l  

Now the boundary  conditions require tha t  the values of it~c, iv~c, ~, and r com- 
puted at  the top of the mth layer be the same as the values computed at  the bo t tom 
of the (m - 1) th layer. This means tha t  we m a y  write 

( i tm/C,  iv ,n/C,  am,  ~'m) = am a m - l ( ~ n - 2 / ¢ ,  ~V,n_2/C, o'm-2, rm-2) (2 .17)  
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In Thomson's paper, the quantity r / 2 g  is taken instead of r as the fourth variable 
on which the matrix a~ operates. This is merely a change in notation so far as any 
one layer is concerned, but g will generally be different in different layers, and it is 
the shearing stress r, and not the shearing strain -r/g, that is continuous across the 
interface. The iterative procedure indicated by equation (2.17) therefore requires 
that ~, or a constant multiple of r, rather than r / 2 g ,  be taken as the fourth variable. 
Thomson's matrices a should then be corrected by multiplying the fourth row by 
2 #  = (2G in Thomson's notation), and the fourth column by (2g) -1. 

By repeated application of equation (2.17) we have, 

(~n-1/C, ~On-1/C, fin-l, Tn-1) = an_la~_2 • • • al(ito/C, iVo/C, fio, ~'o) (2.18) 

and by application of the inverse of equation (2.11) for the n th layer, 

(A: + A", A " -  A" ' ,, , ,, 1 E~ a~_l • • • al(ito/C, d~o/c, fio,ro) n ,  Wn - -  COn , COn + co~ ) = an -2  

(2.19) 

So far the development has been quite general, and equation (2.19) is equally appli- 
cable to surface waves or to waves transmitted through the layered medium. The 
case with which we are particularly concerned is that in which there are no stresses 
across the free surface, so that a0 = r0 = 0, and there are no sources at infinity, so 
that AJ '  = co." = 0. Writing J for the matrix product E~-la ,_~ a~-2 . . . . . . .  a,, 

equation (2.19) becomes, 

or, explicitly, 

! ! 

(A', A', co.) = J( o/C, O, O) 

! 

An = J l l i t o / C  ~ -  J12~Vo/C 

A:  = J2~ieo/C -4- J22iz/c  

! 

co~ = &li~o/C + &~iVo/C 

! 

~ = J41i~o/c "[- J4~Vo/C 

By eliminating A.' and ~ '  we have, 

~o J22 - J12 

~o J l l  - -  J21 

J 4 2 -  Js2 

J31 - J41 

(2.20) 

(2.21) 

Since the elements of the matrix J are functions of the parameters c and k, equation 
(2.21) provides an implicit relationship between c and k, which is the desired phase 
velocity dispersion function. 

SOME GENERAL PROPERTIES OF THE SOLUTION 

Setting A = an-1 a~2 • • • al and using equation (2.16) for E~ -1, equation (2.21) may 
be written in the form 

- (~o/~bo)  = K / L  = M / N  ( 3 . 1 )  
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where 
N 

K = ~,~r~A12 + ('y~ - 1)A22 - r~A3~/p~c 2 + A42/p~C ~ 

L = "y~r.~AH + (3'~ -- 1)A2~ - r~A~/p~c  2 -4- A4~/p~c 2 

M = -(3'~ - 1)A12 + ~=r~A22 + A~2/p~c 2 -4- r~=A4~/p=c 2 
I 

N = "(%~ -- 1)A11 + ~,~r~A2~ + A31/p~c 2 + r~A~/p~c 2 I 

(3.2) 

In the two-layer case, equations (3.1) and (3.2) may  be shown to be equivalent to 
the expressions that  have previously been derived by  Sezawa, Lee, and others. 

In the expressions for the elements of the matrices am it will be observed that  the 
quantities sin Pro, sin Q~, r ~ ,  and r~m, which may be either real or imaginary de- 
pending upon the value of c, occur only • • -1 ±1 in the combinations r,~, sin Pm, and r~m sin Q. 
Since sin Pm is real or imaginary according as r~m is real or imaginary, and sin Qm is 
similarly related to r ~ ,  these combinations are always real for real values of c. With 
regard to the real or imaginary properties of its elements the matrices am then have 
the form 

R I R I 

a m  = 

I R I R 

R I R I 

I R I R 

where an R indicates a real quant i ty  (not, of course, the same quanti ty in all posi- 
tions) and an I indicates an imaginary quantity.  The product of any two matrices 
of this form is also a matrix of the same form; hence of the elements of A occurring 
in equations (3.2) : 

Am A22, A31, and A42 are real ; 
At2, A21, A32, and A41 are imaginary. 

By definition a "surface" wave is one whose amplitude diminishes for large values 
of z, which means in our case that  r,~ and r~  must be imaginary, tha t  is, we are 
concerned only with values of c < f~. Then, referring to equation (3.2), all terms 
of K and N are real and all terms of L and M are imaginary. Thus the ratio ~0/w0 
will always be imaginary, which means a phase difference of 90 ° between the hori- 
zontal and vertical displacements at the free surface. The particle motion is there- 
fore an ellipse whose axes are vertical and horizontal. The phase difference may, 
however, be of either sign, and hence the sense of the motion around the ellipse 
is not  necessarily retrograde with respect to the direction of propagation at all fre- 
quencies, as is the ease with Rayleigh waves on a homogeneous medium. 

If we were dealing with a dissipative medium, i t  would be necessary to consider 
complex values of c and k. In tha t  case, the ratio t~0/60 would not necessarily be a 
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pure imaginary, meaning that phase differences of other than 4-90 ° could occur 
and the axes of the displacement ellipse could be inclined from the vertical. It  is 
therefore possible that imperfect elasticity of the medium is the cause of the inclina- 
tion of the axes that is very commonly observed in the case of explosion excited 
surface waves on poorly consolidated sediments. 

I t  is obvious that if two adjacent layers have identical physical properties, they 
must be equivalent to a single layer whose thickness is equal to the sum of the thick- 
nesses of the two layers. Thus, if we let a~(d) be the matrix a~ computed for a given 
layer thickness d, we must have 

a,~(d~)a~(d2) = am(d~ -I-d~) (3.3) 

This relation may be readily verified by direct multiplication. Also, since k occurs 
in a~ only as the product kd~, equation (3.3) implies, 

a~(k~)am(lc~) = am(k1 -~ ]c:) (3.4) 

where/~, and k2 are any two values of k and a~ is computed for fixed values of c 
and d~. 

ASYMPTOTIC FORM FOR LONG WAVE LENGTHS 

As the wave length becomes very large, kd~ --~ 0 and all the matrices a~ approach 
the unit matrix. Thus J~ -~ E~ -1 and equation (2.21) reduces to 

or 
fZo/Wo = - - ( ~ .  - -  ! ) / ~ / n r ~ n  = 3 ~ n r ~ / ( ' Y n  - -  1) 

( ~  -- 1) ~ + 7 j r j ~  = 0 

(4.1) 

(4.2) 

which is the equation for the Rayteigh wave velocity on the semi-infinite layer. 
If we expand the terms of the matrices am in powers of k and ignore powers higher 

n-I n-1 1 1 ik ~ d m  0 ik ~dm/p,dt,~ ~ 
1 1 

n - 1  n - 1  

ik ~d~[1 - 2(f3~/o~) 2] 1 ik ~d,~/p~c~J 0 
A -~ 1 1 (4.3) 

n--1 I 0 Ed Pm 1 ik 

n--1 n-1 ] 
ikc2~d,~p,~[1-2V,,q-2~/m(fl,~/a,~) ~] 0 i k ~ d , ~ [ 1 - 2 ( ~ / a m )  2] 1 3 

- -  1 1 

n--1 

Thus for wave lengths so long that k2( ~ d~) 2 may be ignored, the a.~'s commute t 
and the order in which the upper layers are arranged is immaterial. To this order of 
approximation the quantities K, L, M, and N are linear functions of k. Hence for a 
given value of c equation (3.1) is a quadratic in k and may be solved explicitly. 

than the first, the matrix A reduces to 
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ASYMPTOTIC FORM FOR SHORT WAVE LENGTHS 

I t  has been shown by Sezawa and Kanai ~ that  in the two-layer case the high-fre- 
quency asymptotic form of the phase velocity equation may be factored. One of 
these factors has a root corresponding to the Rayleigh wave velocity on the free 
surface of the first layer; the other is Stoneley's ~ expression for the velocity of inter- 
face waves on the contact between the two layers. The latter may  or may not have 
a real root, depending upon the relative values of p, a, and fl in the two layers. I t  
seems evident on physical grdunds that  in the multilayer case the phase velocity 
equation must also be factorable at  sufficiently high frequencies, the various factors 
representing Rayleigh waves on the free surface and Stoneley waves on each inter- 
face. In order to demonstrate this it will be convenient to write the matrix J in 
the form, 

J = b~_~ b ~ _ ~ .  • • b ~ E 1  ~ (5.1) 
where 

b~ /~-~ = ~+~  D ~  ( 5 . 2 )  

That  is, instead of grouping the matrix factors of J by layers, we now group them 
by interfaces. Now suppose that  c < ¢~_~, so that  P~_~ and Q~_~ are imaginary and 
the sines and cosines represent hyperbolic functions. Then for large values of/~d~_~, 
sin P~_~ -~ - i  cos P~_~ and sin Q~-I --~ - i  cos Q~-I. In this limit, the elements of 
b~_~ approach the following values: 

( b ~ - ~ ) n  = - ( b ~ _ , ) ~  = ( a ~ _ ~ / a ~ ) ~ { ~ ' n  - ( 7 ~ - ~  - 1 ) ( p ~ _ ~ / p ~ ) }  c o s  P ~ _ ~  

( b ~ _ ~ ) ~  = - (b~_~)~ ,  = ( c / a ~ ) ~ _ ~ r ~ ( ~ _ ~ ) { ~  - v ~ - ~ ( p ~ - ~ / p ~ ) }  c o s  Q~_~ 

(b~-~)2~ = - (b~_~)22 - -  ( c ~ _ ~ / c ~ ) 2 ( r . ( ~ _ ~ ) / r . ~ ) { ( 7 ~  - 1)  - "~n--~(p~--~/P~)} COS P ~ _ ~  

(b._~) ~ = - -  (b._~)~4 = - ( c / ~ ) ~ ( 7 . _ ~ / r ~ . )  { ( . r . -  1)  - ( 7 ~ - ~ -  1 ) ( p ~ _ ~ / p . ) }  c o s  Q . _ ~  

( b . _~ ) ~  = ~ (b~-~)~2 = - ( ~ . - ~ / c ) ~ ( ' ~ r ~ )  -~{  (~,~ - 1 ) -  ( ~ . _ ~  - 1 ) ( o n - i / p ~ )  } c o s  Pn--~ 

( b . _ ~ ) ~  = - -  ( b ~ _ ~ ) ~  = ( V ~ _ ~ ¢ ~ _ ~ / v ~ r ~ ) { ( v ~  - ~)  - v ~ _ ~ ( o ~ _ ~ / o ~ ) }  c o s  q ~ _ ,  

(b~_~)~ = - (b~_~)~ = ( ~ - ~ / c ) ~ ( ~ ¢ ~ _ ~ / v ~ )  { v ~  - v ~ - ~ ( o ~ - d o ~ ) }  c o s  P ~ _ ~  

( b ~ _ ~ ) ~  - -  - ( b ~ _ ~ ) .  = ( v ~ _ ~ / ~ ) { v ~  - ( v ~ - ~  - 1 ) ( ~ _ ~ / ~ ) }  c o s  On--1 

If we set J~_~  = b~_:  b~_~ • • • b l E j  -~,  then since (b~_,)i, = - (G-,)i: and (b~_l)j, = 
- (b~_,)j, for high frequencies, we may write 

J2~ - J12 = [(bn-1)11 - (b~_j)2,][ (J~-J)22 - (J~-1)1~1 

J .  - J ~  = [ (b~_~)i~ - (bn_~)~l] [(J~_~), - (J~-~)2~] 
+ [(b~_l)~- (b~_~)23] [(J~_~)~- (J~-1)4~] 

J 4 2 -  J~2 = [ (b~-~)8~- (b~-~)4~] [ ( J , _ ] ) ~ -  (J~-~)12] 
+ [(b~_~)~3- (b~-~)431 [(J,,-~)42- (J~-~)~21 

J 3 1 -  J4~ = [(b~_~)~- (b~-~)41] [ (J~_~)~-  (J~-~)2~] 
+ [(b~_~)~a- (b~_~),~] [ ( J , -~)~ l -  (J~-~)41] 

K. Sezawa and K. Kanai, "Anomalous Dispersion of Elastic Surface Waves," Bull. Earthq. Res. 
Inst. Tokyo, 16:683 (1938). 

R. S. Stoneley, "Elastic Waves at the Surface of Separation of Two Solids," Proc. Roy. Soc., 
106:416 (1924). 
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Setting 

L '  ( Jn- , )~ l  - (Jn-,)2~ 

M ' =  ( J n - ~ ) 4 2 -  (Jn-~)32 
N '  = ( J ~ _ ~ ) ~ -  (J~_~)~ 

(5.3) 

R = (b._~)j~ -- (b._~)~ ] 
s = (b ._ , )~  - (b._~)~ 
T = (b~_,)~ -- (b._~)~, 
U = ( b . - 1 ) 3 8  - ( b . _ ~ ) 4 ~  

(5.4) 

the relation (2.21) between the elements of J may be written in the form 

R K  l "-~ S M '  T K '  + U M '  
m 

R L '  -5 S N '  T L '  -5 U N '  

Cross-multiplication and cancellation reduces this equation to the factored form, 

( R U  - S T )  ( K ' N '  - L ' M ' )  = 0 (5.5) 

Equating the first factor of this expression to zero and using the values of the 
elements of b~-i given above, the common factor cos P~-I cos Q._I may be divided 
out and the resulting expression put  in the form, 

2 • p~[('),. -- 1) 2 + ~,.rj~.][1 -k- r~(._,)r~(._l)] 2p.p._,[(~'._l) -}- ~.r..r~.][(~,._l -- 1) 

+ 7n-lr.<.-1) r~(._l)] + p.p._a[r~(._a)r~. + r~.rz(._l)] -~ p.-I~(T.-1 -- 1) 2 

-}- 3,~_1r~(,_i)re(,_1)][1 + r~,r~,] = 0 (5.6) 

which is equivalent to Stoneley's equation for the (n - 1) th interface. 
The second factor of equation (5.5), when equated to zero, is equivalent to the 

original expression, except that  it refers to (n - 1) instead of n layers. The same 
process may  therefore be repeated~ leading to a product of factors each correspond- 
ing to Stoneley waves on one of the interfaces, and a final factor which has the form 
of equation (4.2) for the first layer and thus represents Rayleigh waves on the free 
surface of this layer. 

I t  will be noted that  a complete algebraic factorization at high frequencies by the 
foregoing process can be carried through only when c is less than the smallest value 
of tim. For  values of c greater than the minimum value of/3m there will be at least 
one layer for which Q~ is a real quantity.  In this case, the ratios K / L  and M / N  will 
not apporach an asymptotic value for large values of k, but  will remain oscillatory 
functions of k. Thus for a given value of c greater than the smallest value of f~m and 
less than ft, there will generally be an infinite number of values of k for which 
K N  - M L  = 0. These roots represent the sequence of normal-mode solutions. Since 
there is only one root at  very low frequency, each of these higher order modes must 
have a low frequency cut-off. 
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THE MATRIX am FOR A FLUID LAYER 

In some cases of seismological interest one of the upper layers may be a fluid. If we 
go directly to the limit/~m = 0, a difficulty arises because the matrix Em as defined 
by equation (2.12)becomes singular and Em -1 does not exist. However, we may 
define an effective inverse transformation as follows: 

Setting 
~m= 0, equation (2.11) becomes 

~m-I/C = --(am/C)~(~J+ AJ') 
i zm_ i / c  = - -  ( a m / c ) ~ r ~ ( A ~  ' - -  Am") 
~m-~ = p ,~,~(~,~'  ÷ A. / ' )  
Tin--! ~ 0 

Since in an ideal fluid continuity of the tangential displacement at a solid boundary 
is not a required condition, the first of these equations is irrelevant and we may 
write, 

! !! 
Am + A,~ = ~ , ~ _ ~ / p , ~  

! l? 
Am --  Am = - - ( c / a ~ ) ' r : ~  ~Vm-I/C 

! ~ ¢.0m t! Also, since rotational waves do not exist in the fluid, ~ = 0. The transfor- 
mation ( h , /  + A " ' " ' " ~ ' (it,~_~/c, iom_j/c ,  am--l, 

rm--l), which is the effective inverse of Era, therefore has the matrix, 

F -1 m 

0 0 (pm~) -~ 0 

2 - 1  o --(Clam) r~,. 0 0 

0 0 0 0 

_ 0 0 0 0 

(6.1) 

For ~m = 0 the matrix D m takes the form 

Dm -- 

( - a ~ / c )  2 cos Pm 

i(am/C)2r~m sin Pm 

2 
pmo~m COS Pm 

0 

i(am/C) 2 sin Pm O 0 1 

1 

- -  (o~/c)~r~m cos Pm 0 0 

• 2 • 
--~pmam sm P~ 0 0 

0 0 0 

(6.2) 
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from which we find 

F - I  am ---- Dm m = 

0 ir.~ Sin  P m  - - ( p m C 2 )  - 1  COS P , ~  

• 2 - 1  • 0 cos Pm ~r,~(p,,c ) sin Pm 

0 ipc:r~ sin Pm cos Pm 

0 0 0 

COMPUTATIONAL PROCEDURE 

0 

0 
(6.3) 

0 

0 

Numerical computation of the function c(k) from equation (3.1) must be carried 
out by a process of trial and error. I t  will usually be convenient to take the thickness 
of the first layer as the unit of length, p~ as the unit of density, and fll (or ~ if the 
first layer is a fluid) as the unit of velocity, in which case the result of the computa- 
tion will be a relation between the dimensionless quantities c/~1 and kdj. Since the 
coefficients of the functions of Pm and Qm in the matrices am depend only on c and 
the constants of the medium, and are independent of k, less computation is required 
to determine the value of k for a given value of c than for the reverse process. The 
limits of possible values of c are given by the Rayleigh velocities for the n ~h layer 
and for the lowest velocity layer present. A set of values of c at convenient intervals 
between these limits may then be chosen and the quantities r~m, r~m, and "r~ for 
each layer computed for each value of c. 

From previously computed c(k) functions for two-layer cases (e.g., Sezawa's 
curves) it will usually be possible to make a preliminary estimate of the value of k 
for a given value of c that will be at least within an order of magnitude of the correct 
value. With this as a first trial value, the elements of the matrices a~, the pertinent 
elements of the product matrix A, and the ratios K / L  and M / N  may be computed. 
By repeating the computation with other assumed values of k and plotting the values 
K / L  - M / N  against k it will usually be possible to determine the root to one-tenth 
of one per cent with four or five trial values. Since the computations involve taking 
differences between quantities of comparable magnitude at several stages, it is 
advisable to carry at least two more significant figures in the computation than is 
desired in the final value of k. 
Q 

ALTERI~ATIVE FORMULAS FOR THE Two-LAYER CAs~. 

If the expressions (3.2) are substituted in the equation K N  - L M  = O, certain 
terms in the products cancel out and the equation may be written in the form, 

[(%, -- 1) ~ "4- "y~r~.r~.] [A21A12 -- A~lA22] -4- (p~c2)-1[ (%, -- 1) -{- ~/~r~#~.] 
[ A~A4~ -4- A~2A~ - A~jA42 -- A21A3~] A- r~(p~c2)-~[ A~2A3~ -- A~A3~] 
+r~.(p~c~)-~[ A 2~A42 - A ~A4~ ] + (p~c~)-2(1 + r j ~ )  [ A3~A4~ -- A4~A~] = 0 

(s.~) 

In the case of more than two layers there does not appear to be any advantage for 
numerical computations in writing the phase velocity equation in this form, but in 
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the two-layer case (n = 2, A = a~) insertion of the explicit expressions for the 
elements of the matrix a leads to the more convenient form, 

- 1  - 1  Ct - C2 cos P1 cos Q1 + C~r,lr~t s in PI  sin Q1 - C4rfl11 cos P1 sin Q1 

-- C5r211 sin P1 cos Q1 = 0 

where the coefficients C~ through C5 are given by the following expressions: 

C1 = 2~'1(~1 - 1 ) ( A  - D + E )  

C2 = A + C1 
22 2 ,  2B(m/p3)(['Y1 1]~-t - ~ 3 2, Ca A([~,~ 1] 2 + vlr.lr#l) = - -  -- -- "ylr~lr~t ) 

4 2 2\ -[- (pl/p2)2(1 + rJo~)([~I -- 1] 4 -t- ~lr ,  lrm ) 

C 4  ~- 

C5 = 

A = 

B = 

D =  

E = 

-- 1] ro3 -Jr- 7tr,~r¢l) i ( p l / p 2 ) ( [ ~ l  2 3 3 

2 3 2  
i(pl/p3)(['Y1 -- 1] r~, q- "ylr.lro,) 

(72 -- 1) 3 + "y.3r~3r~2 

( p l / P 2 ) ( 2 ~ l  - -  ~ )  B 

(pl/p3)2(1 + r~2r~2)'yl('y~ - -  1) 

(8.2) 

Equat ion  (8.2) is particularly useful because it can be solved explicitly for the 
higher,order roots• For ill- < c < al, P~ is imaginary and Q~ is real, so that  sin P1 and 
COS Pi become very large in absolute value for moderately li~rge values of kdl, while 
I sin Qll and[ cos Qll remain = 1. Dividing equation (8.2) through by  cos P1 cos Q~, 
dropping the small term Cl/cos P1, and noting that  tan P1 --~ - i  for large values of 
kdl, we find, 

• - 1  • - 1  

- -  C2)/(~r~ C~ -[- C4) tan Q1 - ~  r~l(W,l C5 (8.3) 
o r  

kdi --> r~l i -1 - -1 -1 C,)/(~r~l C~ -1- C4)} -]- nTrrm (8.4) tan { r ~ l ( ~ r . 1  C 5  - • - 1  

where n = 1, 2, 3, • • • etc. and tan -1 is given its smallest positive value. 

Love  WAvEs 

In the case of Love waves the boundary conditions to be satisfied at each interface 
are continuity of the transverse component of displacement, v, and of the transverse 
shear stress, Yz. The pertinent plane-wave solution of the elastic equations of motion 
for a homogeneous layer is 

u = w = 0  

v = exp [ i (p t  - - / cx )]  [v' exp (--ilcr~z) + v"  exp (ikr~z)] (9.1) 

where v' and v" are constants. 



30 BULLETIN OF TIlE SEIS1V[OLOGICAL SOCIETY OF AMERICA 

The corresponding transverse shearing stress is 

Y~ = ~Ov/Oz = ik~r~ exp [i(pt - kx) ] [ - v '  exp (-ikr~z) + v" exp (ikr~z)] (9.2) 

At the (m - 1) *h interface we then have 

(O/c)m-~ = ik(vm' + vm") t (9.3) 

(Y~)~-I = ik~mr~(v,J' - vm') ) 

and at the mth interface 

(~/c) m = ( v , / +  v,/ ')ik cos Qm - (vm" - vm')k sin Qm 
(9.4) 

J (Y,),~ = -- (v,/ + Vm")k/~r~m Sin Q~ + (v,/' - vm')ikg,~r~m cos Qm 

By eliminating v , /and  vm" between equations (9.3) and (9.4), 

(9m/c),, = (9/c)m-1 cos Q~ + (Y~),~_~#m-lr~.~-li sin Q~, ]~ 
(9.5) 

J (Y~)m = (~/c)m-~i#,~r~m sin Q~ + (Y~)~-I cos Q~ 

The matrix a~ in this ease is therefore 

a m = I  cosQ~ i~m-lr~,~-~ sin Q,~ 1 

Li#mr~m sin Qm cos Q~ J 

f 1 itzm-ir-l~m tan Q~ 1 
= cos Q~ (9.6) 

Li#mr~m tan Qm 1 

Setting a._l a~-2 • • - al = A as before, the analog of equations (2.18) is 

(O/c)~_~ = A~(~/C)o + A~(Y~)o 
(9.7) 

= + J 

and using equation (9.3) for m = n 

v~ 1 + v~" = Aj~(ik)-l(~/C)o + A~2(it~)-l(y~)o 
(9.s) 

The conditions for the existence of free surface waves are (Y~)0 = 0 and vJ'  = 0, 
which, with equations (9.8) lead to 

A 21 = - ~ra~All (9.9) 
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In the two-layer case, A = al, and equation (9.9) reduces to the Love wave dis- 
persion equation in the familiar form. 

tan Q1 = - i(~2r~/~lr~O (9.10) 

APPLICATION TO TI-IE RAYLEIGtI WAVES OF EARTHQUAKES IN 

CONTINENTAL AREAS 

Considerably more detailed study of the dispersion of Rayleigh waves over conti- 
nental paths will be required before it will be possible to make any conclusive 
quantitative interpretation of the observed dispersion in terms of continental struc- 
ture. However, as a preliminary step in this direction, phase and group velocities 
have been computed for assumed layered structures as shown in table 1. The values 
of a, f~, and d have been so chosen that the time-distance curves for the first arrivals 
of P and S waves are the same in all cases except for that portion of the curve that 
corresponds to refraction from the intermediate layer. Case III  is intended to be 
typical of the interpretations that have been made from blast and near earthquake 
recordings in areas of little or no low velocity sedimentary cover, in particular those 

TABLE 1 

Case I . . . . . . . . . . . . . . . . . . . .  

Case I I  . . . . . . . . . . . . . . . . . . .  

Case I I I  . . . . . . . . . . . . . . . . . .  

Layer a (kin/see.) fl(km/sec.) p(gm/cm~) d (kin.) 

6.14 
5.50 
8.26 

6.14 
8.26 

6.14 
7.00 
8.26 

3.39 
3.18 
4.65 

3.39 
4.65 

3.39 
4.04 
4.65 

2.70 
2.70 
3.00 

2.70 
3.00 

2.70 
2.70 
3.00 

13.60 
11.85 

o o  

28.38 

13.60 
21.21 

CO 

TABLE 2 

Case I .  

Case I I .  

Case I I I .  

Layer 

1.810 
1.620 
2.440 

1.810 
2.440 

1.810 
2.060 
2.440 

1.000 
0. 938 
1. 370 

1.000 
1.370 

1.000 
1.190 
1.370 

1.000 
1.000 
1.110 

1.000 
1.110 

1.000 
1.000 
1.110 

1. 000 
O. 871 

c o  

1.000 
c o  

1.000 
1.560 

c o  
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TABLE 3 

Case I 

c/ # kdl l~(dl + d2) t~o/d~o 

1.265 
1.250 
1.200 
1.150 
1.100 
1.050 
1.000 
O. 950 
O. 938 
0.920 
O. 920 
0.924 

0 
0.0647 
0.405 
0.729 
0.962 
1.186 
1.461 
1.920 
2.126 
2.817 
5.00 

c o  

0 
0.1211 
0.758 

1 . 3 6 4  
1 .800 
2.219 
2.734 
3.592 
3.978 
5.271 
9.36 

--0.670 1 
--0.744 1 
--0.849 1 
--0.716 1 
--0.6451 
--0.619 1 
--0.619 1 
--0.638 1 
--0.645 1 
--0.662 1 
--0.669 
-0 .667  i 

Case I I  

Rayleigh mode First mode 

c/ th kdl c/ t~l kdl 

1.265 
1.250 
1.200 
1.150 
1.100 
1.050 
1.000 
0.950 
0.930 
0.924 

0 
0.1339 
0.895 
1.550 
2.029 
2.518 
3.167 
4.489 
6.381 

1.370 
1.350 
1.300 
1.250 
1.150 
1.100 
1.050 
1.030 
1.010 
1.000 

2.383 
2.957 
4.303 
5.510 
7.716 
9.397 

12.766 
15.882 
25.54 

Case I I I  

1.265 
1.250 
1.200 
1.150 
1.100 
1.050 
1.025 
1.000 
0.975 
O.950 
0.930 
0.924 

O 
0.0717 
0.5123 
0.8634 
1.197 
1.551 
1.954 
2.365 
2.929 
3.837 
5.76 

0 
0.1836 
1.311" 
2.210 
3.064 
3.971 
5.002 
6.054 
7.498 
9.823 

14.75 

--0.670 
--0.710 
--0.828 
--0.746 
--0.699 
--0.672 
--0.656 
--0.649 
--0.647 
--0.652 
--0.662 
--0.667 
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Fig. 2. Phase velocity of Ray]cigh w~ves for assumed crustM structures. 
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of Leet, Hodgson, and Tuve. 5 Case I has been computed to show the effect on 
Rayleigh wave dispersion of a low velocity zone whose existence has been suggested 
by Gutenberg, s and II represents an intermediate case between I and III  for com- 
parison purposes. The computations have been carried through in dimensionless 
form with ~, pi, and d taken respectively as the units of velocity, density, and length 
in each case. The values of the ratios actually used are given in table 2. 

The computed values of kdl, k(dl -~ d2), and of ~0/0J0 for various values of c/fll are 
listed in table 3. With the sign conventions used here a negative imaginary :value of 
~/~b0 corresponds to retrograde particle motion. Only the mode of lowest order 
(Rayleigh mode) has been computed for Cases I and III, but the next higher mode 
is also given for Case II. 

The phase velocities of the Rayleigh modes for the three cases and the first normal 
mode for Case II are plotted in dimensionless units in figure 2. The curve for Case I 
has a minimum at c/B~= .918, k(dj ~ d~) = 7 approximately. 

The corresponding group velocities, computed from the expression U= c÷kdc /dk  
by graphical differentiation, are plotted against the period T = 2~r/kc in figure 3. 
Although the computation of the roots corresponding to the first normal mode has 
not been carried through for Cases I and III, rough estimates indicate that the low 
frequency cut-off for these cases will not be very different from that for Case II. 

Some observed values of group velocities at various frequencies over continental 
paths are also plotted in figure 3. These values have been taken from tabulations 
published by Gutenberg, Gutenberg and Richter, Lynch and Dillon, and Wilson 
and Baykal. 7 In view of the scatter of the observed points it is not possible to say 
tha~ any one of the assumed models is conspicuously favored over the others, but 
the data do not disprove the hypothesis of the possible existence of a low-velocity 
layer under at least some parts of the continents. Some of the scatter of the Observed 
values is no doubt due to observational errors such as misidentification of wave type 
and erroneous determination of periods due to interference by the simultaneous 
arrival of higher frequencies in the higher-order modes, but some of the scatter is 
probably due to real horizontal inhomogeneity of the continental crusts. Certainly 
the discordance between the crustal structures derived from P and S travel-time 
data from blasts and near earthquakes in different areas suggests a comparatively 
high degree of heterogeneity in the layers above the MohoroviSi5 discontinuity. 

5 L. D. Leet, "Trial  Travel Times for Northeastern America," Bull. Seism. Sac. Am., 31: 325-334 
(1941); J. H. Hodgson, "Analysis of Travel Times from Rockbursts at Kirkland Lake, Ontario," 
Bull. Seism. Sac. Am., 37:5-17  (1947); M. A. Tuve et al., "Studies of Deep Crustal Layers by 
Explosive Shots," Trans. Am. Geophys. Union, 29:772 (1948). 

B. Gutenberg, "The Structure of the Crust in the Continents," Science, 111 : 29 (1950). 
7 B. Gutenberg, Handbuch dcr Geophysi#c, Vol. 4 (Berlin, 1932) ; B. Gutenberg and C. F. Richter, 

"On Seismic Waves. I I I , "  Gerlands Beitr. z. Geophysik, 47:73-131 (1936); W. A. Lynch and V. 
Dillon, "Characteristics of Alaskan Earthquake Records at Distances of 40 ° to 70°, ' '  Bull. Seism. 
Sac. Am., 37:181-195 (1947); J. T. Wilson and O. Baykal, "Crustal Structure of the North Atlantic 
Basin as Determined from Rayleigh Wave Dispersion," ibid., 38:41-53 (1948). 
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