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S1.  Iron isotope compositions of basalts from different planetary bodies. 

Poitrasson et al. (S1) found that terrestrial and lunar basalts are enriched in heavy iron isotopes 

relative to Martian basaltic shergottites, Vesta basaltic eucrites and chondrites, undifferentiated 

meteorite. Subsequent studies (S2 - S6) generally confirmed this observation (Fig S1). However, 

the difference between iron isotope compositions of lunar and terrestrial basalts is still a 

controversial subject (S4 - S6). Different interpretations (S1, S2, S4-S6) of iron isotope 

compositions of lunar and terrestrial samples are presented below (see also Fig. S2): 

1. Poitrasson et al. (S1, S5) argue the enrichment of Moon's rocks in heavy iron isotope relative to 

those from the Earth based on their measurements of iron isotope composition of lunar and 

terrestrial samples. Poitrasson et al. (S1) obtained 0.206‰ for the averaged 57Fe value of N = 

14 lunar samples (Fig S2). (Hereafter, all iron isotope compositions are given relative to the 

Institute for Reference Materials and Measurements 014 (IRMM-014) standard). The standard 

deviation (SD) of the lunar sample set measured by Poitrasson et al. (S1) is 0.051‰; the 

standard error (SE) is 0.014‰. Appropriate values for the Earth samples investigated by 

Poitrasson et al. (S1) are following: N=13; 57Fe = 0.102‰; SD = 0.053; SE = 0.015. Poitrasson 

et al. (S1) showed that averaged 57Fe values of iron isotope compositions of lunar and terrestrial 

samples they studied are distinctly different at the > 99% confidence level based on the Student 

t-test. There are five lunar Ti-rich (>8%) basalts among samples investigated by Poitrasson et al. 

The averaged 57Fe value of iron isotope composition of these high-Ti basalts (57Fe = 0.242‰, 

SD = 0.029‰) is somewhat greater than that of other lunar basalts (57Fe = 0.188‰, SD = 

0.061‰). Nevertheless, the average 57Fe value of lunar samples without high-Ti basalts is 

greater than that of terrestrial mafic rocks, according to Poitrasson et al. (S1) measurements (Fig 

S2).  



2. Weyer et al. (S2, S6) believe that lunar and terrestrial basalts have identical bulk Fe-isotope 

compositions. According to Weyer et al. (S2) measurements, the averaged 57Fe value of lunar 

basalts is 0.158‰ (SD = 0.099‰; SE = 0.026‰; N= 15). Weyer et al. (S2) also found that Ti-

rich lunar basalts have the heavier Fe isotope composition in comparison with other lunar 

basalts. The averaged 57Fe of four high-Ti mare basalts samples is 0.301‰ (SD = 0.013‰; SE 

= 0.008‰). Non-Ti-rich basalts have significantly easier lower Fe isotope compositions: the 

averaged 57Fe = 0.106‰; SD = 0.049‰; SE = 0.015‰; N = 11. Fe isotope compositions of 

Earth basalts were investigated by Weyer and Ionov (S7): the averaged 57Fe = 0.169‰; SD 

=0.086; SE = 0.024; N=14 (Fig. S3). 

3. Beard and Johnson (S4) suggested to use Fe compositions of low-Ti mare lunar basalts for 

interplanetary comparisons (Fig. S2). According to their compilation based on data from (S2, 

S8), the averaged 57Fe of low-Ti mare lunar basalts to be converted to IRMM-014 standard is 

0.15‰ (SD = 0.06‰; N=14). Using data from (S1, S2, S8), they found the average 57Fe = 

0.27‰ (SD = 0.045; N=9) for high-Ti mare basalts. The average 57Fe for Earth basalts (S9) is 

0.143 (SD = 0.066; SE = 0.012; N = 30). 

One should stress that all investigators (S4 -S6) agree that similar rock types must be compared 

when considering possible inter-planetary Fe isotope differences and that basalt-basalt correlation 

mirrors differences in iron isotope compositions of silicate portions of interplanetary bodies. 

 
S2. Main concepts and quantities of the stable isotope fractionation theory. 

 

An isotope fractionation factor between two samples A and B is defined as ratio of isotopic 

compositions of these samples. According to this definition, one can write for the 57Fe/54Fe isotope 

fractionation factor: A-B = ([57Fe]/[54Fe])A/([57Fe]/[54Fe])B, where [57Fe] and [54Fe] denote the 

concentration of 57Fe and 54Fe isotopes, respectively. Along with the isotope fractionation factor, 



one uses the isotopic shift () usually expressed in per mill (‰) and defined as: A-B = (A-B - 

1)1000 (‰). Since the deviation of the isotope fractionation factor from unity is not significant for 

iron isotope substitution, it is convenient to use the 103lnA-B instead of the isotopic shift due to the 

relationship: 103lnA-B  103(A-B -1) =  A-B, which is fulfilled with the high accuracy.  

The -factor or the reduced isotopic partition function ratio is the main concept of the stable isotope 

fractionation theory (S10). At given temperature and pressure, one defines the -factor in terms of 

free energies of two isotopologues as: 
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factor; G(T,P) is the Gibbs free energy at given pressure and temperature; z is the multiplicity of the 

isotope substitution; R is the universal gas constant; m is the mass of the isotope; the asterisk stands 

for the minor isotopologue. Equilibrium fractionation factor between two substances A and B is 

directly expressed through the -factors: ln ln lnA B A B   
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. For equilibrium isotopic shift, one 

can write: 3 3(‰) 10 ln 10 lnA B A B A B      . The -factor of a given substance determines 

the distribution of isotopes in equilibrium processes. 

 

S3. Evaluation of anharmonic corrections at high pressures and temperatures.  

Evaluation of anharmonic effects is the principal subject of the stable isotope fractionation theory. 

According to the technique developed by P. Gillet with his collaborators (S11), the effect of 

anharmonicity can be written as a sum of the quasi-harmonic term describing explicit dependence of 

normal frequencies on molar volume (density) and the intrinsic anharmonic term expressing normal 

frequencies as explicit functions of temperature. As it was shown (S12), the intrinsic anharmonicity 

does not affect the -factor significantly and can be neglected. For this reason, the quasi-harmonic 

approximation is used in the present evaluation of the anharmonic correction. If the ln at higher 



temperature (T) is calculated in the harmonic approximation using the PDOS obtained at room 

temperature (T0) and pressure P, this means that ln is calculated at high temperature (T) and 

volume V0 corresponding to temperature T0 and pressure P according to the equation of states 

(EOS). To evaluate the anharmonic correction to the value of the ln, one must calculate the change 

of the ln caused by the change of volume from V0 to V (V is the molar volume at temperature T and 

pressure P), i.e., ln(T,V) - ln(T,V0).  

In the quasi-harmonic approximation, the volume derivative of the ln is written as (S13, Eq. 9):  
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where ui = hi/kT is the dimensionless frequency; i is the modal Grüneisen parameter; "*" denotes 

minor isotopologue quantities. The parameter  coincides with the Grüneisen th constant in the case 

of single-element (simple) substances. 

At high temperatures, ln ~T -2, Eq. S3.1 can be rewritten as: 
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One can get from Eq. S3.3 after simple transformations: 
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The change of the volume is caused by the thermal expansion and can be calculated by the following 

formula: 
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Eq. S3.5 is the subject of Lagrange's theorem. In this equation, T is the thermal expansion 

coefficient; T  is the value of the thermal expansion coefficient at some temperature T1, T0 <T1<T. 

As T0 << T, then T  T. The thermal expansion coefficient increases with temperature. Since, the 

following expression somewhat overestimates the lnV, if T relates to temperature T: 

ln  TV T  (S3.6) 

Substituting this to (S3.4), one gets: 

ln
2

ln


  TT

 


. (S3.7) 

For the quantitative estimate of the anharmonic correction, it is convenient to transform Eq. S3.7: 
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where  T
th

V

K V

C

 ; KT is the isothermal bulk modulus; CV is the molar heat capacity at constant 

volume; CV3Rn at high temperatures; n is the number of atoms in a chemical molecular unit.  

The most simple evaluation can be done for iron, because  = th  1 in this case. This gives 

ln/ln ~ -0.87 at 2000 K and ~ 0.175 at 4000 K and low pressure, if literature data of KT = 161.6 

GPa and V= 6.89 cm3/mole are used. For non-single-element substances,  is significantly lower 

than unity (S13), one can expect that the anharmonicity effect will be lower. The anharmonic 

correction to the ln is always negative. One can expect that the anharmonic correction to ln 

between post-perovskite and iron does not exceed 9% at 2000 K and 18% at 4000 K at low 

pressures.  

One can also to estimate the anharmonic correction to ln for iron at high pressures. Using KT = 746 

GPa and V = 3.76 cm3/mole from Mao at al. (S14), one gets for iron: ln/ln = 0.038 at 2000 K 

and 0.074 at 4000 K. It is difficult to estimate the anharmonic correction for complex, non-single-



element, substances because data on i at high pressures are absent. However, if we suppose that  is 

approximately the same at high and low pressures, one can estimate the ratio of anharmonic 

corrections at high and low pressures:  
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 according to the Oganov and Ono (S17) EOS for post-perovskite. One can see 

that application of harmonic approximation to calculating the ln at high pressure results in the 

smaller error than that at low pressure. The anharmonic correction to the ln at ~ 4000 K and 130 

GPa is equal to that at ~ 1600 K and ambient pressure. High pressures are a favorable condition for 

the application of the harmonic approximation to calculating the -factor.  

Errors about of 4% in ln at 2000 K give errors < 0.02 in the 103ln value at 2000 K and errors 8% 

in ln at 4000 K lead to errors < 0.01 at 4000 K. 



 

S4. Propagation of experimental errors in 57Fe PVDOS to ln.  

Experimental uncertainties in the 57Fe PVDOS for Fe-metal and (Mg,Fe)SiO3-post-perovskite (S14, 

S18) allow evaluating errors in calculated ln. Unfortunately, authors of (S19) did not include data 

on experimental errors in the 57Fe PVDOS of ferropericlase in their paper. One can expect that 

errors in ln in the case of ferropericlase do not differ significantly from those calculated for Fe-

metal and (Mg,Fe)SiO3-post-perovskite. The propagation of error from the 57Fe PVDOS to ln is 

not a trivial task. Following the previous works (S20, S21), I have applied the Monte-Carlo 

technique to solve this task. The algorithm of calculations is as follows: 

1. Using the computer program for the Gaussian distributed variable at a given mean value and 

dispersion, random values of gr(e) have been calculated at each experimental point of the 

PVDOS curve. (Mean values in this calculation are equal to experimental g(e) values and 

dispersions are equal to the square of standard errors, i.e., the one-side error bar length). One 

experimental curve contains about one hundred points. 

2. The random gr(e) computed on the preceding stage has been normalized to unity: 

. (S4.1) 
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3. The random value of the 57Fe/54Fe lnr has been computed by Eqs. 2 and 3 in the main text of 

this paper, using the gr(e) calculated on stages 1 and 2. 

4. Computations according to items 1, 2 and 3 were repeated 250 times and the random sampling 

of the lnr was obtained. 

5. The standard error in the 57Fe/54Fe ln was calculated as the square-root of the dispersion of the 

random sampling obtained in the previous step. 



A good agreement between the average value of the lnr random sampling and ln computed using 

the function g(e) is a criterion for the correctness of this algorithm. In present calculations average 

value of the lnr random sampling and ln were different in the fourth significant digit only. 

Calculated standard errors are presented on Fig. 1 and 3 as error bars. Standard errors of 57Fe/54Fe 

ln in Fig. 4 were calculated as a sum of standard errors of 57Fe/54Fe ln for Fe-metal and for 

(Mg,Fe)SiO3-post-perovskite which is divided by 2 . 
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Fig. S1. Interplanetary differences in iron isotope compositions of basalts. Horizontal bars 

correspond to two-standard-error ranges. One can observe the enrichment of terrestrial 

and lunar basalts relative to those from the Mars, Vesta and chondrites samples at two-

standard-error level. Parameters of datasets are following:  

Averaged 
value, 

Standard 
deviation 

Standard 
error 

Number of 
samples  Literature sources 

57Fe (‰) (‰) (‰) 
Chondrites -0.059 0.072 0.021 13 S1, S3, S22 
Vesta basaltic eucrites 0.017 0.031 0.007 19 S1, S2, S3 
Mars basaltic shergottites 0.006 0.033 0.013 8 S1,S2 
Lunar basalts 0.182 0.084 0.015 32 S1, S2, S8 
Terrestrial basalts 0.140 0.070 0.008 69 S1, S2, S3, S7, S9 

All original data are converted to 57Fe/54Fe isotope composition and IRMM-014 iron 

isotope standard. 
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Fig. S2. Different estimates of the relationship between iron isotope compositions of lunar and 

terrestrial basalts. See also explanation in the chapter S1. Blue and orange diamonds relate to 

averaged 57Fe of terrestrial and lunar basalts respectively; orange circles relate to 57Fe of 

lunar basalts without high-Ti lunar basalts; an orange triangle relates to lunar low-Ti mare 

basalts. Red and green bars denote unbiased standard deviations and unbiased standard 

errors, respectively. Poitrasson et al's (S1) results include data on all rocks as this is done by 

authors (S1, S5). Weyer et al's estimate is presented using their data on Fe-isotope 

compositions of lunar basalts from (S2) and Weyer and Ionov (S7) measurements of Fe-

isotope compositions of terrestrial basalts. Berd and Johnson's point of view is illustrated 

using their compilation of Weyer et al. (S2) and Wiesli et al (S8) data on low-Ti mare lunar 

Fe-isotope compositions and Beard et al. (S9) measurements of Fe-isotope compositions of 

terrestrial basalts. All data relate to IRMM-014 iron isotope standard.  
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Fig. S3. Iron isotope fractionation between the silicate phase (olivine) and metallic phase (Fe-metal, 

troilite) in pallasite. One can see that the direction of silicate - Fe-metal isotope 

fractionations in pallasites coincides with those predicted by -factors (S20, 24). Data for 

Molong and Mount-Vernon are within the uncertainty of measurements. Data for Eagle 

Station are controversial. Unfortunately, one cannot estimate the temperature of the metal-

silicate differentiation using this data. "Isotopic" temperatures are too small to be realistic. 

Roskosz et al. (S25) noted that these "isotopic" temperatures reflect cooling history of 

meteorites. The kinetic (diffusional?) isotopic effects during cooling may be also occurred, 

for instance, in the case of Molong and Mount-Vernon (?). Troilite is always isotopically 

lighter than silicates as predicted by Moessbauer- and INRXS-derived -factors. 
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