
Depth-dependent rheology and the horizontal length scale of

mantle convection

A. Lenardic,1 M. A. Richards,2 and F. H. Busse3

Received 21 January 2005; revised 20 September 2005; accepted 16 January 2006; published 25 July 2006.

[1] Numerical simulations show that depth-dependent viscosity can increase the
wavelength of mantle convection. The physical mechanism behind this phenomenon and
its robustness with respect to model parameters remain to be fully elucidated. Toward this
end, we develop theoretical heat flow scalings for a convecting fluid layer with depth-
dependent viscosity. Bottom and internally heated end-members are considered. For the
former, the viscosity structure consists of a high-viscosity central region bounded from
above and below by horizontal low-viscosity channels. For internally heated cases, only a
surface low-viscosity channel is present. Theoretical scalings derived from boundary layer
theory show that depth-dependent rheology lowers the lateral dissipation associated with
steady state convective rolls, allowing longer aspect ratio cells to form as the viscosity
contrast between the channels and the central region is increased. The maximum cell
aspect ratio is estimated from the condition that the pressure gradients that drive lateral
flow in the channels do not become so large as to inhibit vertical flow into the channels.
Scaling predictions compare favorably to results of numerical simulations for steady
state cells. As the Rayleigh number driving convection is increased, small-scale boundary
layer instabilities begin to form. This increases lateral dissipation within the channels
and the preferred cell aspect ratio decreases as a result. Internally heated simulations show
that a near-surface high-viscosity layer, an analog to tectonic plates, can suppress these
small-scale instabilities. This allows a low-viscosity channel to maintain large aspect ratio
cells for Rayleigh numbers approaching that of the present-day Earth.
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1. Introduction

[2] Plate motions at the Earth’s surface represent a highly
unusual style of thermal boundary layer motion in response
to solid-state thermal convection in the deep mantle. This
style is apparently unique in the solar system, at least at the
present time. Among the unique features are nearly piece-
wise-constant surface velocities over distances that far
exceed the depth of convection (e.g., the Pacific plate), as
well as phenomena such as whole plate subduction and
stable ridge-transform systems; none of these features are
found in convection studies of normal fluids.
[3] Diverse rheological mechanisms must be responsible

for plate-style convection on Earth. Temperature depen-
dence of viscosity alone leads ultimately to a ‘‘stagnant
lid’’ style of convection [e.g., Solomatov, 1995], which may,
for example, explain the current convective regime of Mars
[Schubert et al., 1992]. However, lithospheric failure (fault-
ing) is also necessary for plate formation, and considerable

attention has been devoted recently to both theoretical and
numerical modeling of mantle convection with various
failure mechanisms or nonlinear rheologies [Bercovici,
1996;Moresi and Solomatov, 1998; Tackley, 1998; Trompert
and Hansen, 1998]. These studies reveal a complicated
variety of behavior, including episodic overturning with
limited periods of plate-like behavior [Moresi and Solomatov,
1998], which may, for example, explain some aspects of
tectonics on Venus [Turcotte, 1993]. More interestingly, truly
stable plate-like behavior does occur when a strong, ‘‘break-
able’’ lithosphere is combined with the existence of a very
weak zone beneath the lithosphere; a consistent finding
among several recent and related numerical modeling studies
[Tackley, 2000a, 2000b; Richards et al., 2001; Stein et al.,
2004].
[4] Since the discovery of plate tectonics four decades

ago, geophysicists have suspected, and often assumed, that
a low viscosity layer beneath the lithospheric plates may
play a central role in facilitating plate motions. This notion
derives from a much longer-standing body of geophysical
evidence for a mechanically weak ‘‘asthenosphere’’ [e.g.,
Anderson and Sammis, 1970; Craig and McKenzie, 1986],
as well as perhaps an intuitive sense that plates must be
‘‘lubricated’’ in order to allow them to move intact. Over the
past two decades geodynamic studies of the geoid and
postglacial rebound have been interpreted to require the
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upper mantle be 1–2 orders of magnitude less viscous,
on average, than the lower mantle, and it is quite possible
that most of this variation might be confined to the
uppermost sublithospheric mantle [Hager and Richards,
1989; Thoraval and Richards, 1997]. Seismological evi-
dence [e.g., Gutenberg, 1959] has long suggested that a
sublithospheric channel of low-velocity exists beneath
much of the oceanic lithosphere, but not beneath stable
continental lithosphere, consistent with the fact that the
plate tectonic model itself is based largely on the behavior
of large oceanic plates. The origin of the seismic low-
velocity zone is controversial [e.g., Stixrude and Lithgow-
Bertelloni, 2005], but it may be due to straightforward
pressure effects on constituent mineral elastic properties, or
to more exotic effects arising from partial melting and the
presence of volatile components, i.e., water [Karato and
Jung, 1998].
[5] A number of geodynamic modeling studies have

focused on the possible role of a low-viscosity zone
(LVZ) in plate tectonics and mantle convection, and these
studies do indeed point to important dynamic effects. For
example, it has been known for some time that an LVZ
may lead to larger aspect ratio convection cells than
normally occur in isoviscous convection [Richter and
Daly, 1978; Jaupart and Parsons, 1985]. Numerical con-
vection simulations, incorporating depth-dependent viscos-
ity, have confirmed that viscosity stratification can have a
first-order effect on the planform of mantle convection
[Hansen et al., 1993; Zhang and Yuen, 1995]. Recent
studies indicate that this effect is quite pronounced. Bunge
et al. [1996, 1997] explored internally heated, 3-D spher-
ical convection models at moderate (106) Rayleigh number
in which the viscosity of the upper mantle was a factor of
20–30 lower than that of the lower mantle, and found
dramatic effects on planform that exceed other likely
effects, such as modest degrees of bottom (core) heating
and phase changes. In these models, viscosity stratification
converts the planform from an almost white spectrum of
point-like downwellings to a very red spectrum of sheet-
like downwellings. Tackley [1996a] examined 3-D models
of mantle convection with strongly temperature-dependent
viscosity, and found similarly strong effects on planform.
Of particular note is that Tackley [1996a] found that almost
all the effect on convection planform can be attributed to
the horizontally averaged viscosity structure. Zhong et al.
[2000] and Zhong and Zuber [2001] also explored the role
of a depth variable viscosity on numerical simulations of
mantle convection and confirmed that a low viscosity
upper mantle, above a higher-viscosity lower mantle,
significantly increases the wavelength of mantle convec-
tion compared to simulations lacking depth-dependent
viscosity.
[6] Thus it appears that radial viscosity stratification of

the mantle can explain various lines of evidence [e.g., Su
and Dziewonski, 1992] that mantle convection occurs at
significantly longer wavelengths than one would normally
expect at mantle Rayleigh numbers approaching 108, where
horizontal structures usually occur at wavelengths consid-
erably less than the depth of the convecting fluid (mantle).
The general conclusion from numerical modeling studies
that radial viscosity stratification, especially an LVZ, leads
to longer-wavelength and more stable convection planform

also appears consistent with recent findings that an LVZ
promotes stable, plate-like convection [Richards et al.,
2001]. Indeed, it seems reasonable to infer that Venus lacks
plate tectonics because it lacks an LVZ, as evidenced from
gravity/topography admittance studies [Kiefer et al., 1986;
Kaula, 1990].
[7] Given its likely importance in determining the nature

of mantle convection and plate tectonics on Earth, one
would hope to be able to derive a clear, physical under-
standing of the effect of an LVZ on convection that would
lead to further insights and, perhaps, testable theoretical
predictions. However, we are unaware of any studies that
offer a straightforward fluid mechanical explanation for
why an LVZ should promote plate motions, or how vertical
viscosity stratification affects mantle convection in general.
We believe that obtaining such an understanding should
lead to a more fundamental understanding of plate tectonics
on Earth as well as mantle convection in the other terrestrial
planets. Such is the goal of the theoretical analysis and
numerical results presented in this paper, and our emphasis
is on explaining stable, long-wavelength structure at mod-
erate to high Rayleigh number.
[8] We use a modification of established boundary layer

theory to formulate a simple physical analysis of the effect
of an LVZ on heat flow and the horizontal scale for
convection. We then test the predictions of this analysis
with 2-D numerical models of convection, demonstrating
good agreement. We then explore numerical models in
which an LVZ is overlain by a strong (‘‘lithospheric’’)
layer, and find that the effect of the LVZ is much enhanced
in this configuration, which we believe is relevant to the
origins of plate tectonics.

2. Analysis and Numerical Simulations

[9] Although the criteria that determine the selection of
convective planforms within a thermally convecting fluid
are not generally understood [e.g., Ahlers, 1995], it is
agreed that lateral dissipation can limit the formation of
large aspect ratio cells [Busse, 1985]. For convective onset,
it has already been shown that viscosity stratification can
shift the neutral stability curve toward longer wavelength by
lowering lateral dissipation [Richter and Daly, 1978]. That
is, long-wavelength flow becomes favored at the onset
of convection for fluids with depth-dependent viscosity
[Jaupart and Parsons, 1985]. However, if the degree of
viscosity stratification becomes too great, convection can
become confined to the low-viscosity region and, as a result,
short-wavelength cells are predicted to occur at convective
onset [Buffett et al., 1994]. The cited work applies only to
small amplitude flow just past convective onset. It is not
clear how this carries over to the case of fully developed,
finite amplitude convection of the type that occurs in the
Earth’s mantle. We will show that depth-dependent viscos-
ity can lower lateral dissipation in fully developed, large
amplitude convective flow systems heated from below or
from within. This shifts the limit on the maximum cell
aspect ratio that is energetically favorable. That is, with
depth-dependent viscosity, the cell wavelength that is most
effective at transporting heat is longer than for the isovis-
cous case. Although this does not guarantee that long cells
will form preferentially to shorter cells, it does show how
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depth-dependent viscosity can make this more favorable by
maximizing heat transport.

2.1. Bottom Heating, Double-Channel End-Member

[10] The relationship between heat flow and cell length
for steady state convection rolls in an isoviscous, bottom
heated fluid has been addressed using boundary layer theory
[Turcotte and Oxburgh, 1967; Turcotte and Schubert, 1982].
Our analysis is a straightforward variation on this approach
(Figure 1). As such, a short review of the basic ideas behind
boundary layer theory will be useful as will results for the
isoviscous case.
[11] Boundary layer theory assumes that the Rayleigh

number, Ra, driving convection is much greater than the
value for convective onset so that horizontal thermal
boundary layers and sinking/rising vertical plumes are thin
relative to the system depth, D (Figure 1a). Convection cells
are dominated by a central core region where motions are
driven by shear stresses imposed by vertical plumes and
horizontal boundary layers. In this limit, the internal cell
temperature, Tc, is the average of the surface, T0, and base
temperature, T1. Flow velocities in plumes and boundary
layers are considered to be spatially constant, and flow in
the central region of the cell can be approximated, to first-

order, as being composed of linear velocity profiles as
shown in Figure 1a. The rate at which work is done on
the plumes by gravitational body forces must equal the rate
at which work is done on the boundaries by viscous forces.
Together with a statement of mass conservation, this work
balance allows the nondimensional heat flux, i.e., the
Nusselt number, Nu, to be solved for as a function of Ra
and the aspect ratio of convection cells, l/(2D). The
expression is given by [Turcotte and Schubert, 1982]

Nu ¼ 1

21=3p2=3

l
2D

� �2=3
1þ l4

16D4

� �h i1=3 Ra1=3: ð1aÞ

The l4/16D4 term in the denominator of equation (1a)
represents lateral dissipation, and it is this dissipation that
leads to the prediction that large aspect ratio cells will be
inefficient at transporting heat. The aspect ratio that is most
effective at transporting heat, at a fixed Ra, can be solved
for using equation (1a) and is found to be

l
2D

¼ 1: ð1bÞ

[12] The lack of an aspect ratio-dependent vertical dissi-
pation term in the denominator of equation (1a) results from
the fact that the simple theory described above assumes that
the length scale of vertical shear can increase continually
with increasing aspect ratio (Figure 1a). This is clearly an
over simplification since for very large aspect ratio cells the
extent of the vertical shear layer should not greatly exceed
the depth of the system, D. In effect, this simplification
limits the applicability of the analysis to cell aspect ratio’s
not much greater than unity. It has already been shown that
beyond the aspect ratio at which the vertical shear scale
becomes constant, increasing aspect ratio will lead a de-
crease in the efficiency of heat transport regardless of how
low the lateral dissipation becomes [Grigné et al., 2005].
That is, beyond the aspect ratio at which the vertical shear
scale becomes constant, lateral dissipation is no longer the
principal limit on convective efficiency. Rather, it is vertical
dissipation that limits the extent of convection cells beyond
this point. We will return to this point below.
[13] We now consider the effects of allowing for hori-

zontal channels of thickness d and viscosity ma that bound a
central region of viscosity mc (Figure 1b). Both ma and mc are
considered to be very large relative to the thermal diffusivity
of the fluid (i.e., infinite Prandtl number flow). The system
is characterized by the thickness of the channels, the
Rayleigh number, Ra, defined in terms of the system depth
and central viscosity, and the viscosity ratio mr = ma/mc. We
again assume convection to be in the form of steady state
rolls, and that thermal boundary layers are thin relative to D
and d. We assume that lateral flow becomes channelized
within the low viscosity regions and consider the first-order
approximation of linear velocity profiles as shown in
Figure 1b. Flow channelization is the key difference
between the boundary layer analysis for the system of
Figure 1b versus 1a. It affects the lateral dissipation of the
system and alters the form of the mass conservation
equation. We have also shown in Figure 1b a maximum

Figure 1. (a) Cartoon of convective cell structure for
constant viscosity convection. (b) Cartoon of convective
cell structure for convection with low-viscosity channels.
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horizontal extent of the vertical shear scale which we
denote as a multiple of the system depth, b D, were b is
of the order of one. The theory developed will assume
that the vertical shear scale increases linearly with aspect
ratio up to this maximum shear scale. Thereafter, the
theory is not expected to be valid. The maximum vertical
shear scale factor b will not be constrained by the simple
theory we develop but will be constrained using numer-
ical simulations (we note that higher-order theory can
be developed that predicts the horizontal structure
[Busse et al., 2006; Morris, 2005]). Aside from this
limitation on the maximum aspect ratio for which the
theory is valid and the assumption of flow channelization,
the analysis will follow classical boundary layer theory
[Turcotte and Oxburgh, 1967; Turcotte and Schubert,
1982].
[14] The main principle of boundary layer theory is that

the rate at which work is done on sinking/rising plumes by
gravitational body forces must equal the rate at which work
is done on the boundaries of the interior region of a
convection cell by viscous forces. To determine the viscous
contribution, the horizontal shear stress due to the lateral
motion of thermal boundary layers, th, and the vertical
shear stress due to sinking/rising plumes, tv, must be
known. For the system of Figure 1b these shear stress terms
are given by

th ¼ ma
2u0

d
ð2Þ

and

tv ¼ mc
4v0

l
; ð3Þ

where we have assumed that d � D. The vertical and
horizontal velocities are related through the statement of
mass conservation expressed as

v0l
2

¼ u0d: ð4Þ

Notice that the expressions for the isoviscous case can be
retrieved by setting d = D and ma = mc. Expressing the
downward gravitational body force on one-half of a
symmetrical plume as Fb, the statement of work balance
can be written as

2Fbv0 ¼ 2Dtvv0 þ lthu0: ð5Þ

The expression for Fb follows from classic boundary layer
theory [Turcotte and Schubert, 1982] and is given by

Fb ¼ 2r0gaD Tc � T0ð Þ u0
v0

kl
2pu0

� �1=2

; ð6Þ

where ro is the reference density, g is gravitational
acceleration, a is the coefficient of thermal expansion,
and k is the thermal diffusivity. The symmetry of the system
of Figure 1b allows us to express the isothermal internal

temperature of the convection cell, Tc, in terms of fixed
surface and base temperatures as

Tc ¼ T0 þ
T1 � T0

2
: ð7Þ

We can combine equations (2)–(7) to derive an expression
for the mean horizontal velocity along the upper boundary
of the cell, u0. The expression is given by

u0 ¼
k
D

d
D

� �2=3 l
2D

� �7=3
d
D

� �3þ l4
16D4

� �
ma
mc

h i2=3 Ra

2
ffiffiffi
p

p
� �2=3

; ð8Þ

where Ra = r0ga(T1 � T0)D
3/(kmc). Notice that this velocity

increases as the viscosity ratio between the channels and the
central cell region, mr = ma/mc, decreases. This can be tracked
back to the expression for the horizontal shear stress
(equation (2)), and it highlights a key distinction between
the systems of Figures 1b and 1a. Notice also that in the
limit of mr tending toward zero, the horizontal velocity
increases as d/D decreases. This can be tracked back to the
continuity equation (equation (4)) and is a consequence of
flow channelization into low-viscosity regions.
[15] We can use equation (8) to solve for the system heat

flow. The total rate of heat flow, Q, out of the convection
cell per unit distance along the cell axis is given by

Q ¼ 2k Tc � T0ð Þ u0l
2pk

� �1=2

; ð9Þ

where k is the thermal conductivity [Turcotte and Oxburgh,
1967; Turcotte and Schubert, 1982]. Inserting equation (8)
and nondimensionalizing by the heat flow that would occur
by conduction in the absence of convection leads to an
expression for the Nusselt number given by

Nu ¼ 1

21=3p2=3

d
D

� �1=3 l
2D

� �2=3
d
D

� �3þ l4
16D4

� �
mr

h i1=3 Ra1=3: ð10aÞ

The key difference between equations (10a) and (1a) is that
the term associated with lateral dissipation is multiplied by
mr in equation (10a). This occurs because, for the system of
Figure 1b, lateral dissipation is associated with flow in the
low viscosity channels. The aspect ratio that is most
effective at transporting heat at a fixed Ra can be solved for
using equation (10a) and is found to be

l
2D

¼ d=Dð Þ3

mr

" #1=4

: ð10bÞ

Notice that this aspect ratio increases with decreasing mr and
the simple physical explanation for this is that the lateral
dissipation in the system decreases with decreasing mr. Notice
also from equation (10a) that for fixed aspect ratio in the limit
of mr tending toward zero, the system heat flux increases as d/
D decreases. This is due to the fact that the horizontal
velocity must increase as d/D decreases, all other factors
remaining fixed, in order to satisfy mass conservation.
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[16] An equivalent, energy dissipation based analysis, to
that provided above, is also given by Richards et al. [2003]
and Morris [2003]. The simplified assumptions with regard
to velocity profiles means that this analysis is not expected
to be quantitatively exact. However, predicted trends should
be robust. Specifically, equation (10a) predicts that for the
limit of mr tending toward zero, the Nusselt number should
scale as (l/2D)2/3 as long as the vertical shear scale, bD,
continues to increase with increasing aspect ratio. Similarly,
although equation (10b) is not expected to provide the exact
value of the aspect ratio that maximizes heat flux, the
prediction that this aspect ratio should increase with decreas-
ing mr should be robust.
[17] An alternate analysis can bring added clarity to the

physical meaning of equation (10b) [Richards et al., 2003;
Morris, 2003]. Flow in the low-viscosity channels requires
a horizontal pressure gradient. long-wavelength cells will
become unstable when the pressure gradient forces in the
channels approach the vertical shear forces acting on the
central region. If the pressure gradient force becomes too
large, fluid from the central region of the cell will not be able
to enter the channels and channelized flow, as in Figure 1b,
will not occur. The pressure gradient can be estimated by
balancing horizontal flux in the channels with vertical flux
in the central region of the cell. The result is

@p

@x
¼ 3

2

v0ma
d3

l
2
: ð11aÞ

The pressure gradient force acting on a channel is given by
1
2
(@p/@x)(l/2)2, while the vertical shear force acting on the
central region of the cell is given by (2v0mcD)/(l/2).
Balancing these two terms leads to

l
2D

¼ 8

3

d=Dð Þ3

mr

" #1=4

; ð11bÞ

which, aside from a constant, is equivalent to equation (10b).
[18] That two different approaches lead to an equivalent

form of the expression for the maximum cell wavelength is
particularly important. The derivation of equation (10b) is
based on an energetic argument. To use it as a criterion for
determining the cell aspect ratio that will be favored in
nature amounts to invoking an optimal type theory, i.e., the
cell aspect ratio that forms will be the one that is energet-
ically most efficient [e.g., Howard, 1972; Busse, 1978]. A
long-standing objection to optimal theories is that they do
not provide any mechanism as to why the system should
evolve toward the efficient state. The pressure gradient
based argument leading to equation (11b) shows that for the
particular problem we are addressing, the energetically
optimal condition is of the same form as a condition based
on a simple force balance. This provides a physical
mechanism for the system moving toward the optimal state,
i.e., force imbalances will drive flow toward a balanced
state.
[19] To test the validity of the scaling trends, we under-

took a suite of numerical simulations. The CITCOM finite
element code was used. Its accuracy in treating convection
problems involving large viscosity gradients has been
documented [Moresi and Solomatov, 1995; Moresi et al.,

1996] and we performed our own convergence testing
for our specific application to assure that simulations were
well resolved. Thermal boundary conditions for simula-
tions in this section are constant surface and basal temper-
atures of, respectively, zero and one, with adiabatic side
walls. Mechanical boundary conditions are free slip at all
boundaries.
[20] Simulation suites explored the dependence of Nu on

cell aspect ratio. For each suite, all parameters were held
fixed except for the modeling domain width. The initial
condition was a fixed wavelength perturbation from the
conductive state. The wavelength of the perturbation was set
such that for any aspect ratio domain, it would generate a
single, box filling cell. After any single simulation was run
for several system overturn times the simulation was
stopped and restarted with a short-wavelength perturbation
to test the stability of the long-wavelength cell. Figure 2
shows thermal fields from representative steady state cases.
Notice that as the viscosity ratio increases, lateral flow
becomes focused into the channels in accord with our
theoretical assumption (Figure 1b).
[21] Figure 3 shows representative vertical velocity pro-

files at the middepth of simulation cells. The vertical
velocity profiles constrain the maximum horizontal extent
of vertical shear that occurs adjacent to thermal upwellings

Figure 2. Thermal fields from bottom heated numerical
simulations.
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and downwellings. Notice that for the thinner channel cases
the extent of the vertical shear layer increases with increas-
ing aspect ratio and that the maximum extent is about
1.5 times the system depth. This implies that the theory
developed should be valid up to aspect ratio’s of 3 (subject
to the assumed values of Ra, d, and mr). Notice also that the
horizontal extent of vertical shear is a function of the
channel thickness. The theory we have developed does
not address this dependence.
[22] Figure 4a plots the results from several simulation

suites in terms of Nu and cell aspect ratio together with the
theoretically predicted trend based on equation (10a) in the
limit of mr � 1. The theoretical trend is shown only out to
an aspect ratio of 3 as the horizontal extent of vertical
shear does not increase with aspect ratio beyond this point
for the simulations shown. The fact that the numerical
curves roll over before this aspect ratio is reached implies
that even for the most extreme viscosity variation models,
lateral dissipation provides a limit on the efficiency of heat
transfer. The simulations confirm that the cell aspect ratio
that maximizes heat flux increases with decreasing mr. The
scaling predicted Nu versus cell aspect ratio trend, up to
the maximizing cell extent, is also in accord with simula-
tion results. Figure 4b plots the effects of channel thick-
ness on Nu for simulations that are in the limit of mr � 1.
The scaling prediction that Nu should increase with
decreasing channel thickness (equation (10a)) is consistent
with simulation results (Figure 4b). The deviation from the
predicted scaling trend for thick channels is expected as
our theory assumes d � D. The deviation for thin
channels is also expected as the thickness of thermal
boundary layers approaches the thickness of the channels,
which moves the thin channel simulations out of the
applicability range of our theory. Nonetheless, even for
the thin channel cases, the prediction that heat flux
increases with decreasing channel thickness is seen to
remain valid (Figure 4b).
[23] Figure 5a plots the aspect ratio that maximizes heat

flux determined from simulation suites together with the

theoretically predicted trends based on equations (10b) and
(11b). Although qualitative predictions are consistent with
simulation results, the quantitative fit is poor. Simple
boundary layer analysis of the type we have followed
assumes a linear dependence on x of the vertical velocity
in the cell interior (Figure 1). As already noted, for large
aspect ratio cells this assumption becomes overly simplified
as, with increasing aspect ratio, the stress exerted by the
vertical plumes should become confined to a distance much
smaller than l/4 from the plumes. A more detailed analysis
that accounts for this can be applied to our problem [Busse
et al., 2006; Morris, 2005]. That analysis solves for the
horizontal extent of vertical shear as a function of system
parameters, leading to the following higher-order scaling

Figure 3. Nondimensional vertical velocity versus the
lateral extent from the center of an upwelling plume for
simulations with different aspect ratios and channel
thicknesses. The velocity plots show the extent of the
vertical viscous shear layer that forms adjacent to thermal
upflows and downflows.

Figure 4. (a) Numerical simulation results for the Nusselt
number, Nu, as a function of cell aspect ratio compared to
theoretically predicted trend. (b) Numerical simulation
results for the Nu as a function of channel thickness, d,
compared to theoretically predicted trend. The noted
Rayleigh number, Ra, is defined using the central core
viscosity.
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for the aspect ratio that is most effective at transporting
heat:

l
2D

¼ p9�1=6
� � d=Dð Þ3

mr

" #1=6

: ð12Þ

Figure 5b shows that this corrected scaling provides a
much improved fit to simulation results. The predictions
that Nu should scale as the cell aspect ratio to the 2/3
power and should increase with decreasing d, in the limit
of mr tending toward zero (equation (10a)), remain
unchanged. Although the simplified analysis is clearly
deficient relative to the higher-order analysis, it does
capture qualitative trends and, unlike the more detailed
analysis of Busse et al. [2006], it can easily be extended to

address internally heated convection, as will be discussed
in section 2.2.
[24] Figure 6 shows the effects of increasing Ra. Unlike

the cases in Figure 4a, the higher Ra cases of Figure 6 are
time-dependent. These cases were run to a statistically
steady state and plotted Nusselt numbers are temporally
averaged mean values. That a statistically steady state was
achieved was confirmed by monitoring the Nusselt number
and RMS velocity from each simulation. Simulation time
series were averaged after the initial start up phase using
variable averaging windows. A simulation was considered
to have entered a statistically steady state when averages
determined from increasing time duration windows differed
by less than 2–3%. A total energy balance was also
monitored as a double check. Heat flow into the base of
the system and out of the system were monitored to assure
that the system, as a whole, was not heating or cooling over
the time frame for which average output values where
determined.
[25] Figure 6 shows that the onset of time dependence,

with increasing Ra, leads to a decrease in the extent of a cell
that maximizes heat flow. For the highest Ra cases, a peak
in the Nu curves becomes very weak. For higher Ra cases
than shown, cell aspect ratios significantly greater than
unity could not be stabilized (i.e., long cells broke down
into shorter cells before a statistically state was achieved).
This confirms previous observations, based on numerical
simulations, that increasing Ra leads to shorter-wavelength
flow in mantle convection models with depth-dependent
rheology [Tackley, 1996a, 1996b]. It should be stressed that
our theoretical scalings do not break down simply because
Ra is high; indeed, boundary layer theory relies on high Ra.
The breakdown of the theory is due instead to the onset of
time dependence which alters the flow profiles within the
low viscosity channels, i.e., the assumed flow profiles of
Figure 1b are no longer valid. Figure 7 shows that time

Figure 5. (a) Numerical simulation results for the Nu-
maximizing cell aspect ratio as a function of the viscosity
ratio and channel thickness compared to theoretically
predicted trends. (b) Numerical simulation results for the
Nu-maximizing cell aspect ratio as a function of the
viscosity ratio and channel thickness compared to predicted
trends from a higher-order theory.

Figure 6. (a) Numerical simulation results for Nu as a
function of cell aspect ratio for simulations with increased
Ra. The dashed grey line shows that the maximizing aspect
ratio decreases with increasing Ra.
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dependence is associated with small-scale boundary layer
instabilities. These instabilities generate large velocity gra-
dients within the channel, causing an increase in lateral
dissipation. Our analysis showed that low lateral dissipa-
tion is what allows for relatively long wavelength cells, and
it is thus expected that increased dissipation will shift
convection toward shorter wavelength. The distinction be-
tween increased Ra versus the onset of boundary layer
instabilities causing our theory to breakdown is not just
one of semantics. It suggests that if a mechanism for
suppressing boundary layer instabilities at higher Ra exists,
then long wavelength flow could occur at higher Ra values.
This issue is taken up in section 2.2.

2.2. Internal Heating End-Member

[26] For internally heated convection, energetic efficiency
cannot be assessed by considering surface heat flux as was
the case for bottom heating. Instead the average temperature
rise across the convecting layer, compared to its value if
heat were removed by conduction, is used to assess effi-
ciency. The temperature rise across the convecting layer is
given by the internal temperature within the cell minus the
fixed surface temperature, Tc � T0. For a layer with uniform
heat production per unit mass of H, density of r, thermal
conductivity of k, and a depth of D, the temperature rise

across the layer if conduction removed all heat would be
rHD2/2k. The ratio of the temperature rise with convection
divided by the value without convection is denoted by q, and
the smaller this ratio the more efficient convection is in
cooling the interior of the fluid. For an isoviscous layer,
classic boundary layer theory can be used to derive a
relationship between q, the internally heated Rayleigh
number, Rai, and the cell aspect ratio, l/2D [Turcotte and
Schubert, 1982]. The relationship is given by

q ¼ 2pð Þ1=2
1þ l4

16D4

� �h i1=4
l
2D

� �1=2 Ra
�1=4
i : ð13aÞ

The l4/16D4 term in the numerator of equation (13a)
represents lateral dissipation and, analogous to the bottom
heated case, long aspect ratio cells are not efficient
at cooling the interior because they are associated with
large dissipation. The aspect ratio that is most effective at
cooling the interior, at a fixed Rai, can be solved for using
equation (13a) and is found to be

l
2D

¼ 1: ð13bÞ

Figure 7. Thermal fields from bottom heated numerical simulations with increased Ra.
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[27] We now consider the effects of allowing for a
horizontal channel of thickness d and viscosity ma above
an underlying ‘‘central’’ region of viscosity mc. The Ray-
leigh number, Rai, is again defined in terms of the system
depth and central viscosity. We again consider convection to
be in the form of steady state rolls with lateral flow
channelized within the low viscosity surface channel. The
first-order approximation of linear velocity profiles is
retained as per section 2.1. As with the bottom heated case,
the boundary layer analysis follows the classic analysis for
an isoviscous layer except for the changes in the horizontal
shear stress term and the mass conservation equation.
Taking these changes into account within the boundary
layer analysis leads to a relationship for q given by

q ¼ 2pð Þ1=2
d
D

� �3þ l4
16D4

� �
mr

h i1=4
d
D

� �1=4 l
2D

� �1=2 Ra
�1=4
i : ð14aÞ

Notice that as with the bottom heated case, the lateral
dissipation term becomes multiplied by mr when a low-
viscosity channel is introduced. This allows longer aspect
ratio cells to be energetically efficient. The aspect ratio that
is most effective at cooling the interior, at a fixed Rai, can be
solved for using equation (14a) and is found to be

l
2D

¼ d=Dð Þ3

mr

" #1=4

: ð14bÞ

[28] Internally heated simulations were performed to
test the validity of scaling predictions. Thermal boundary
conditions for simulations of this section are a constant
surface temperature of zero, an insulating base, and adia-
batic sidewalls. Mechanical boundary conditions are free
slip. Figure 8 shows thermal fields from representative

steady state cases. Figure 9a shows results from several
simulations suites in q cell aspect ratio space. Notice that as
the viscosity ratio decreases, the cell aspect ratio associated
with greatest interior cooling increases as predicted by our
scaling analysis. Additional simulation results showed that
the internally heated scaling predictions maintained reason-
able consistency with simulation results, provided the
system remained in steady state. The degree of match
between scaling prediction and simulation results was
comparable to that of section 2.1 for bottom heated cases.
As with bottom heated cases, scaling predictions broke
down as Rai was increased (Figure 9a), and this was again
due to the onset of time dependence and the consequent
increase in lateral dissipation.
[29] Results presented thus far show that a low-viscosity

channel has the potential to push mantle convection toward
longer wavelengths by lowering the lateral dissipation

Figure 8. Thermal fields from internally heated numerical
simulations with a surface low-viscosity channel. For the
smaller aspect ratio cases, small-scale corner rolls formed
above the main broad thermal upflow as can be seen in the
top left corner of the thermal images for the 1 � 1 and 2 � 1
simulations. These stable corner rolls did not form for larger
aspect ratio cases.

Figure 9. (a) Numerical simulation results for q as a
function of cell aspect ratio for internally heated convection
with a near-surface low-viscosity channel. (b) Numerical
simulation results for q as a function of cell aspect ratio for
internally heated convection with a submerged low-
viscosity channel.
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associated with plate movement. The applicability of this
idea is, however, brought into question by the fact that our
results also show a shift to shorter wavelength at Rayleigh
numbers well below the Earth’s present-day value [e.g.,
Davies and Richards, 1992]. We reemphasize that the shift
is due to the onset of small-scale boundary layer instabilities
that increase lateral dissipation. For the system we have
explored thus far these instabilities arise at relatively low
Rayleigh numbers because the upper boundary layer is
assumed to have the same low viscosity as the low-viscosity
channel. For Earth, the viscosity of the upper boundary layer,
i.e., of the plates, will be much greater than that of the
asthenosphere. This higher viscosity likely stabilizes the
upper boundary layer and thus allow a low-viscosity channel
to maintain long-wavelength flow at higher Rayleigh numb-
ers. Our final set of simulations explores this possibility.
[30] We consider internally heated simulations in which

the low viscosity channel does not extend to the surface of
the modeling domain, as in the inset of Figure 9a but is
instead ‘‘submerged’’ below a higher-viscosity layer, as in
the inset of Figure 9b. Figure 9b shows results from several
submerged channel simulations suites in q cell aspect ratio
space. Thermal fields from representative long-wavelength
cases are shown in Figure 10. For all the suites the channel
thickness is 0.1 and the channel is submerged a nondimen-
sional distance of 0.05 from the surface of the domain. The
near-surface layer of thickness 0.05 is a highly idealized
analog of a tectonic plate. The viscosity of the surface layer
and the interior region of the cell are equal for the simu-
lations of Figures 8b and 9. This allows the surface layer to
participate in convection, i.e., the layer remains active as
opposed to stagnant.
[31] Comparison of the results shown in Figures 8a and

8b shows that the submerged channel, as compared to the
surface channel, configuration allows long-wavelength cells
to be efficient at cooling the interior at higher Rayleigh
numbers. Simulations that varied the viscosity of the near-
surface layer indicate that this conclusion does depend on
the surface layer participating in convection (Figure 11). As

the viscosity ratio of the surface layer relative to central core
region increases, the velocity of the surface layer decreases
and the surface layer itself becomes stagnant. A stagnant
surface layer leads to a large velocity gradient from the base
of the layer into the low-viscosity channel which increases
lateral dissipation. This, in turn, makes long wavelength
cells inefficient at cooling the interior, verifying the sus-
pected mechanisms at play.
[32] Figures 9b and 10 suggest the need for a theoretical

analysis exploring the interaction between a low-viscosity
channel and high viscosity ‘‘plates,’’ together with numer-
ical simulations that sweep the full parameter space of the
extended system. This goes beyond the scope of the present
paper, but these preliminary results make it clear that ‘‘in the
presence of a strong lithosphere’’ the effect of an LVZ in
generating long-wavelength structure is preserved to higher
Ra regimes than might otherwise occur.

3. Discussion

[33] The boundary layer analysis presented at the outset
of this paper yields a straightforward physical explanation
for why an LVZ promotes long-wavelength structure in
finite amplitude convection. In normal viscously dominated
convection, the horizontal length scale is limited by the
rapid increase in horizontal shear dissipation that occurs as
convection cells grow longer. Horizontal shear dissipation is
markedly reduced by a thin, low-viscosity layer below
(above) a cold (hot) boundary layer. Note that it would be
misleading to attribute this effect to ‘‘lubrication’’ of the
bottom of the boundary layer, because the effect we have
explored does not occur for the simpler situation of a cold,
stiff boundary layer overlying an otherwise isoviscous fluid
interior.
[34] Our analysis predicts (equation (10a)) that Nu scales

with the 2/3 power of convection cell length for sufficiently
large viscosity contrasts, and this prediction is verified in

Figure 10. Thermal fields from internally heated numer-
ical simulations with a submerged low-viscosity channel.

Figure 11. Numerical simulation results for q as a function
of cell aspect ratio for internally heated convection with a
submerged low-viscosity channel and a variable surface
layer viscosity.
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numerical tests. Numerical tests also verify the theoretical
prediction (equation (12)) for how the optimum cell length
scales with channel thickness and viscosity contrast. A
fuller theoretical analysis published elsewhere [Busse et
al., 2006; Morris, 2005] is necessary to obtain the correct
scaling, because the less rigorous result (equation (10b))
does not adequately address the vertical viscous shear scale
associated with thermal upwellings and downwellings.
[35] Equations (10a) and (12) thus constitute a simple

theory for the effect of low-viscosity zones for the ‘‘sym-
metric’’ case of bottom heated convection. A similar theory
(equations (14a) and (14b)) holds for internally heated
convection (cold boundary layer underlain by a low viscos-
ity channel), although the correct scaling for cell length
has not yet been derived theoretically, and it is likely
that equation (14b) should be replaced by an expression
similar to equation (12). The analysis for the internally
heated case is also verified by numerical modeling, suggest-
ing that the full theoretical analysis of the symmetric case
[Busse et al., 2006] is indeed relevant to planetary mantle
convection.
[36] As anticipated, these results have limited utility, in a

strict sense, because they break down at the higher Rayleigh
numbers applicable to mantle convection in the terrestrial
planets. Short wavelength boundary layer instabilities at
high Ra effectively introduce a great deal of horizontal shear
dissipation, negating the ‘‘advantage’’ of longer convection
cells afforded by an LVZ. Nevertheless, the modeling and
analysis results summarized above led us to hypothesize
that if the LVZ were ‘‘submerged’’ beneath a higher
viscosity layer (‘‘lithosphere’’), as imposed by tempera-
ture-dependent viscosity in mantle convection, then the
short-wavelength instabilities would be inhibited, and the
LVZ effect on cell length might be restored. This is, in fact,
exactly what is revealed in numerical tests (Figure 9b). The
submerged LVZ results in a dramatic increase in the length
of stable convection cells even at moderately high Ra. For
viscosity contrasts of 1000 or more the preferred cell length
appears almost unbounded, although our numerical models
are limited by finite domain length. The numerical models
show that Nu increases with decreasing channel thickness
(for sufficiently strong viscosity contrast). The reason this
happens is that as the LVZ becomes thinner, horizontal flow
velocities within the low-viscosity channel increase, thereby
increasing the efficiency of cooling at the base of the higher-
viscosity thermal boundary layer (lithosphere). Altogether,
these results demonstrate that an LVZ beneath a strong (but
mobile) lithosphere will result in very long wavelength
structure in convection, even at high Ra.
[37] Much work remains to be done to fully understand

the lithosphere/LVZ interaction discussed above. However,
we believe that the preliminary results of Figure 9b offer a
straightforward explanation for why an LVZ is so effective
in promoting a plate tectonic style of mantle convection: A
combination of the reduction of shear dissipation, rapid
horizontal channel flow due to the LVZ, and suppression of
downwelling instabilities by a cold, relatively stiff litho-
sphere result in large aspect ratio cells with nearly piece-
wise-constant upper surface velocities. The caveat is that the
upper thermal boundary layer can fail (fault) at a yield stress
comparable to the characteristic stresses due to convection.
This explanation is appears fully consistent with the recent

numerically based findings of Tackley [2000a, 2000b],
Richards et al. [2001], and Stein et al. [2004].
[38] The numerical models (both here and in the plate-

like simulations) suggest that an LVZ must represent a
viscosity contrast of 2–3 orders of magnitude in order to
be effective in promoting long-wavelength structure and
plate-like boundary layer motions. As noted in the Intro-
duction, there is considerable independent geophysical
evidence that the upper mantle has an average viscosity
1–2 orders of magnitude less than that of the lower mantle,
depending upon how one parameterizes the mantle layers.
The most robust constraints are from models of the geoid
and postglacial rebound, but it is well known that there is
little model resolution on the radial viscosity structure. For
example, Thoraval and Richards [1997, Figure 5], explor-
ing various geoid modeling trade-offs, showed that geoid
constraints can be met with a low-viscosity layer between
80 and 220 km depth for viscosity contrasts of 1–4 orders
of magnitude, depending upon other modeling parameters
(especially the details of the lithospheric boundary condi-
tion!). It is less clear to us how forgiving postglacial
rebound data may be in similar regards, but we know of
no data that exclude either a ‘‘thick,’’ moderate-contrast
LVZ filling most of the upper mantle or a ‘‘thin,’’ high-
contrast layer corresponding roughly to the thickness of the
seismic low-velocity zone.
[39] The results of this study do not depend on the

particular physical mechanism(s) responsible for an LVZ
on Earth, because the empirical geophysical constraints
appear sufficient to warrant serious consideration in any
case. The origin of the ‘‘asthenosphere’’ and Gutenberg’s
[1959] low-velocity zone beneath oceanic lithosphere and
tectonically active continental lithosphere remains a matter
of long-standing controversy. Stixrude and Lithgow-
Bertelloni [2005] argue that subsolidus mineralogical
responses to increasing pressure may be sufficient to ex-
plain the seismic low-velocity zone without resort to partial
melting or near saturation by volatile components. Karato
and Jung [1998] suggest that subsolidus effects of water
may also explain both the LVZ and the seismic low-velocity
zone, due to the weakening effect of water on bond
strengths in olivine and other constituent minerals. Certainly,
if water is the culprit, then the implication that Venus lacks
plate tectonics because it is dry is reinforced by the lack of
evidence for an LVZ there [e.g., Kiefer et al., 1986]. Yet
another possibility is that lattice preferred orientation (LPO)
in the uppermost mantle preferentially weakens the sublitho-
spheric mantle, as suggested by evidence for seismic anisot-
ropy in the upper mantle low-velocity zone beneath the
Pacific Ocean [Ekstrom and Dziewonski, 1998].
[40] Our results also beg consideration of how an LVZ

and, perhaps by implication, water in the upper mantle
control, or are maintained by, feedback effects in the overall
thermal and chemical evolution of terrestrial planets. Such
questions are, of course, far beyond the scope of this study,
but to the extent that we have reinforced the idea that the
presence of an LVZ may be an essential element of plate
tectonics on Earth, it becomes even more clear that geo-
physicists need to focus more on the fundamental nature of
this region of the mantle.
[41] As a final note, the issue of long-wavelength con-

vection extends beyond purely Earth-based interests. It has
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been suggested that the Martian hemispheric dichotomy is
the result of long-wavelength convection in the early
Martian mantle coupling to the crust and causing it to
thicken over one side of the planet [McGill and Dimitriou,
1990; Zhong and Zuber, 2001]. This has naturally led to the
question of whether long-wavelength convection is likely to
occur under the conditions that prevailed early in Mars’
history. Our results suggest that depth-dependent rheology
can allow for long-wavelength flow although they cannot
confirm that this is likely at the high Rayleigh numbers that
would prevail early in the history of a planet. Our results
also suggest that the mantle lithosphere must have been
mobile to allow for long wavelength flow in early Mars
(Figure 11). A degree of mobility for the mantle portion of
the lithosphere is also required if the dichotomy did indeed
form as a result of mantle convection driven crustal thick-
ening. Lithospheric mobility can be achieved if Mars was in
a sluggish lid mode of convection early in its history or if it
experienced an early episode of plate tectonics [Sleep, 1994;
Nimmo and Stevenson, 2000; Lenardic et al., 2004].

4. Conclusions

[42] Theoretical boundary layer analysis, combined with
numerical simulations, demonstrate how low-viscosity
layers within a convecting mantle can lead to a flow
channelization that lowers the lateral dissipation associated
with convection cells. This allows larger aspect ratio cells to
form as the ratio of channel to bulk mantle viscosity
decreases. This result is shown to hold for both bottom
and internally heated convection. Small-scale boundary
layer instabilities, which arise when the Rayleigh number
becomes sufficiently large, disrupt the channel flow and
increase lateral dissipation. As a result, long-wavelength
cells become unstable once boundary layer instabilities
appear. A high viscosity, mobile surface layer above a
lower-viscosity channel can suppress the onset of boundary
layer instabilities and allow flow channelization to maintain
long-wavelength convection cells for Rayleigh numbers
approaching the Earth’s present-day value. Collectively, our
results suggest that the Earth’s asthenosphere plays a crucial
role in determining the characteristic length scale of mantle
convection. They also offer an explanation for why an LVZ
may represent an essential requirement for plate tectonics.
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