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Introduction

Over the years several igneous geo-
chemists have devised geochemical
diagrams that discriminate between
volcanic rocks of various plate tec-
tonic settings and which might reveal
the original tectonic setting of
volcanic terranes that have been trans-
ported, deformed and metamor-
phosed. Early schemes were based on
the relatively small datasets on volca-
nic rocks available then (a few hun-
dred samples) and the boundaries
between the various fields were con-
structed by the eye, and thus subjec-
tive (e.g. Pearce and Cann, 1971,
1973). Agrawal (1999) showed the
use of probability-based classifier sur-
faces as boundaries between rock
categories, and Agrawal et al. (2004)
used them in major oxide plots based
on linear discriminant analysis of
>1000 samples of volcanics from
various tectonic settings. In sync with
a fast-growing global database of
volcanic rock compositions, there is
a current surge of interest and activity
in this field, and very recent literature
includes extensive evaluations of exist-
ing schemes (e.g. Snow, 2006; Verme-

esch, 2006a) as well as new ingenious
schemes (e.g. Shragge and Snow,
2006; Vermeesch, 2000b; Verma et al.,
2006). In this study, I evaluated the
discriminating power of diagrams pro-
posed by Verma et al. (2006) (called
VGA06 hereafter) and Vermeesch
(2006a) (V06a hereafter).

The diagrams, test data and data
processing

The VGA06 diagrams (Fig. 2) are
based on a large training set (2300
samples) of young (Late Miocene
through Recent) basic (SiO2 < 52
wt.%) and some ultrabasic rocks
(SiO2 < 45 wt.%) from four tectonic
settings (ocean island, island arc, mid-
ocean ridge and continental rift). With
400 additional (test) samples, they
yielded successful classification rates
of 83–97%. The V06a plot (Fig. 3) is
based on 738 training samples with
SiO2 values between 45% and 53%
belonging to OIB, IAB and MORB
categories.
Rollinson (1993) has asked whether

geochemical diagrams fundamentally
can indicate tectonic setting because
igneous rock compositions are
strongly determined by sources (man-
tle and crustal) and processes (partial
melting, fractionation, contamination)
and not directly by tectonic setting.
Continental crustal contamination,
not a consideration for oceanic volca-
nics, can be significant for continental

rift basalts. The 52% SiO2 cutoff used
by VGA06 does not imply that such
rocks are free of crustal contamina-
tion (indeed the converse may be true,
as more primitive, hotter liquids may
assimilate much more crust than
evolved liquids, e.g. Huppert and
Sparks, 1985). However, basic and
ultrabasic rocks would have a vastly
larger mantle input than evolved
rocks, which may even be continental
crustal melts (e.g. Verma, 2000).
Major oxide data in an analysis

must add to 100% and are thus
subject to closure, and spurious cor-
relations exist in such closed datasets
(Chayes, 1960). Aitchison (1982, 1986)
proposed log-ratio transformation to
�free� the data values to range from )¥
to +¥, and both VGA06 and V06a
take advantage of this desirable prop-
erty. Both use SiO2 (the most abun-
dant oxide) as the denominator to all
ratios, and have performed linear
discriminant analysis of the log-ratio
data to obtain two discriminant func-
tions. The V06a plot is a modification
of one by Pearce (1976), who per-
formed linear discriminant analysis
but was unaware of closure (Verme-
esch, 2006a). The differences between
the VGA06 and V06a diagrams are
that whereas the former contain dis-
criminant functions including all the
oxides, the latter�s functions exclude
FeO, Fe2O3 and P2O5. Due conver-
sion of total Fe into Fe2+ and Fe3+ is
an important step in the VGA06
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diagrams, for which the proposal of
Middlemost (1989) is used. The field
boundaries are probability-based sur-
faces (Agrawal, 1999). LOI-free major
oxide data are obtained using the
SINCLAS program of Verma et al.
(2002).
The VGA06 diagrams are five dia-

grams, offering all possible combina-
tions of the OIB-CRB-MORB-IAB
groups. I tested the VGA06 and
V06a diagrams here using 333 samples
of mafic volcanics from the Indian
Ocean region (Fig. 1). The data come
from the archetypal ocean islands of
Mauritius and Rodrigues (110 and 10
samples, respectively), the arc volcano
Barren Island in the Andaman Sea (45
samples), and the Carlsberg and
Southwest Indian ridges (40 and 128
samples respectively). I then applied
the diagrams to ophiolites (96 sam-
ples) in Iran, Pakistan, Tibet and the
Andaman islands that represent rem-
nants of the Tethyan and Indian
oceanic crusts. None of these samples
is among the >2700 total samples
used by VGA06, or the �1000 sam-
ples used by V06a, in their training
and testing sets.

The results

Figure 4 is the total alkalis-silica
(TAS) diagram (Le Bas et al., 1986)
showing the general characteristics of
the test samples. Almost all Mauritius
and Rodrigues samples are basic, and
a few ultrabasic, and most of these
alkalic. Several Barren Island samples
are basaltic andesite, and two andes-
ite. The Carlsberg Ridge sample suite
does not resemble typical N-MORB
(which are low-K tholeiites), but are
rather alkalic. Most Southwest Indian
Ridge samples are true N-MORB.
Figures 2 and 3 show the data for
them on the VGA06 and V06a dia-
grams, and Tables 1 and 2 give the
number of samples that lie within a
particular field in each, along with the
overall percentage success rates for
each rock suite. The main observa-
tions and interpretations follow.

Mauritius and Rodrigues OIB

The raw and adjusted (LOI-free) SiO2

values are all £52%. However, the
VGA06 diagrams classify almost 60%
of the Mauritius samples with CRB,
with only 37% with OIB, and 80% of

the Rodrigues samples with OIB. This
means that OIB and CRB cannot be
distinguished by VGA06, something
these authors found with their own
testing set. There are strong chemical
and isotopic similarities between CRB
and OIB (e.g. Smith, 1993; Fitton,
2007). OIB-like magmas are abundant
in continental rifts, suggesting closely
similar mantle sources. Although
mantle plumes are often invoked for
both OIB and CRB, OIB-type chem-
istry is no longer considered diagnos-
tic of plumes (Natland and Winterer,
2005; Hofmann and Hart, 2005; Fit-
ton, 2007). CRB and OIB also cannot

be distinguished with alteration-resis-
tant trace elements such as Nb and Zr
(Fitton, 2007).
The V06a plot correctly classifies

77% of the Mauritius (but only 60%
of the Rodrigues) samples, partly
because of its different discriminant
functions. But it has also an edge over
VGA06 by not having a CRB category
to which OIBs can be so similar.
Indeed, dropping the CRB category
dramatically improves the perfor-
mance of the VGA06 diagrams
(Table 3). Whereas the VGA06 dia-
grams together perform much more
poorly than the V06a plot, the VGA06

Fig. 1 Map of the main geographical and geological features of the Indian Ocean and
bordering landmasses. Modified from Mahoney et al. (2002a,b) and Zhang et al.
(2005).
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�d� diagram, without a CRB category,
has a much better individual perfor-
mance, comparable to that of V06a
(Table 3). Thus, more categories in
such diagrams do not mean improved
performance; rather, the opposite can
be true. Finally, because an over-
whelming majority of ophiolite suites
are oceanic (and few, if any, CRB
suites would become ophiolites), it
may be worthwhile to drop the CRB
category from such diagrams.

Barren Island arc volcano

Several of the 45 samples notably have
LOI-free SiO2 > 52%, the upper limit
for the VGA06 diagrams, and there-
fore these should strictly not be tested.
Nevertheless, these diagrams show an
overall (and minimum) success rate of
72%, and seem to work well for arc
rocks. The V06a plot correctly classi-
fies 100% of these, indicating that the
degree of differentiation is not a con-
cern over this SiO2 range.

Carlsberg Ridge

Not too surprisingly, most Carlsberg
Ridge MORB samples are not classi-
fied with MORB in the five VGA06
diagrams. In fact, overall 72% of
these samples are classified as IAB
and 26% as MORB. On the V06a
plot, only 37.5% of these samples are
classified with MORB, and 67.5% are
misclassified with OIB. It was noted
from the TAS diagram (Fig. 4) that
these rocks are not N-MORB. They
may be enriched (E)-MORB.
E-MORB are abundant along a very
long section of the Southeast Indian
Ridge east of �100oE, without any
nearby hotspot (Mahoney et al.,
2002a). Trace element data for the
Carlsberg Ridge suite here (Banerjee
and Iyer, 1991) are limited to Ni, Co,
Cr and Cu, and hence the possible
E-MORB nature of this suite cannot
be ascertained. Part of the problem
may be that several major oxides in
this study were measured by atomic
absorption spectrophotometry, where
instrumental calibration with mono-
element solutions (as opposed to the
multielement natural rocks) is the
norm. Alternatively, the alkalic com-
positions of this suite (and their mis-
classification in the diagrams) may be
because of weathering and alteration
(see e.g. Verma, 1981; Jochum and
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Fig. 2 (a–e) Data for Indian Ocean volcanics on the discrimination diagrams of
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Verma, 1996). However, Banerjee and
Iyer (1991) did not notice the samples
to be particularly altered, and in the
case of the next rock suite, demonstra-
ble weathering and alteration have not
caused a significant misclassification.

Southwest Indian Ridge MORB

The study by Nakamura et al. (2007)
offers an opportunity to apply the
VGA06 and V06a diagrams to fresh
and altered MORB from the same
area, and thus to evaluate the role of
weathering and alteration in misclas-
sification. Their 128 samples come
from the Southwest Indian Ridge,
near the Rodrigues Triple Junction.
On the basis of petrographic (celado-
nite, chlorite, etc.) and geochemical
evidence, they have divided the rocks
into fresh (20 samples), low-tempera-
ture altered (61 samples), and high-
temperature, hydrothermally altered
(47 samples).
Eighty per cent of the fresh SWIR

MORB samples are classified with the
MORB category in the VGA06 dia-
grams, and all 100% in the V06a plot.
What is remarkable, however, is that
these results and results for low-tem-
perature and high-temperature altered
MORB are closely similar. The
VGA06 and V06a diagrams correctly
classify 80% and 100%, respectively,
of the low-temperature altered
MORB. For the high-temperature
altered MORB, the success rates are
lower with the VGA06 diagrams
(71.5%), but as high as 91.5% with
the V06a plot. Considering the SWIR
MORB suite as a whole, the success
rate with the VGA06 diagrams is 76.9,
and with the V06a plot it is as high as
96.9. This is consistent with VGA06
who reported the highest success rates
(as high as 97%) with MORB. This is
proof that whereas specific types of
alteration may cause misclassification
in particular cases, alteration does not
always cause misclassification – a
highly encouraging result.

Case study: Asian ophiolites

Ophiolites are almost always structur-
ally deformed and altered, if not
metamorphosed as well. Many ophio-
lite suites that outcrop in Asia repre-
sent long-subducted Tethyan and
Indian oceanic crusts. Because the
tectonic setting of several is wellTa
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understood, with major and trace
element and sometimes Sr-Nd-Pb iso-
topic determinations, it is tempting to
use the current diagrams to see if these
can corroborate (and presumably, by
themselves reliably indicate) the set-
ting. Figure 5 shows the data for these
ophiolites on the Zr–Ti diagram, pro-
posed by Pearce and Cann (1973) and
here in its modified form after linear
discriminant analysis (Vermeesch,
2006a). Some show affinities with a
single tectonic category (e.g. Parh

Group with OIB), and others with
more than one.
Figures 6 and 7 show the data for

these ophiolites on the VGA06 and
V06a diagrams, and Tables 4 and 5
summarize the results. The c. 75 Ma
Parh Group (Bibai Volcanics) alkali
basalts and basanites are known to
have formed as intrusions in shelf-type
marine limestones and other sedi-
ments, and based on their normalized
multielement patterns and isotopic
evidence Mahoney et al. (2002b) inter-
pret them as OIBs. The data lie in the

CRB and OIB fields in Fig. 5 (and
OIB field in Fig. 7) and these plots
reaffirm the known great geochemical
closeness of CRB to OIB. The V06a
plot classifies all samples correctly
with OIB. Data for the Muslim Bagh
ophiolite cover all fields in the VGA06
diagrams with the MORB field
slightly dominating (48.6% MORB
followed by 23.8% IAB samples);
notably, these were interpreted as of
composite tectonic setting (ridge plus
arc) based on trace element and other
evidence (Khan et al., 2007). They are
indeed classified as MORB (52%) and
IAB (38%) by the V06a plot, and
straddle across all the fields in Fig. 7.
The Band-e-Zeyarat ⁄Dar Anar ophi-
olite of Makran was interpreted as
MORB based on elemental and
Sr-Nd-Pb isotopic evidence (Ghazi
et al., 2004); Table 4 shows 51% of
the samples classified as MORB fol-
lowed by 30% IAB samples, whereas
the V06a plot classifies 55% of them
with IAB. Here these diagrams per-
form poorly.
Sr-Nd-Pb isotopic character of the

Indus-Zangbo and Eastern Himalayan
syntaxis ophiolites indicates their Teth-
yan MORB provenance (Zhang et al.,
2005). 60% samples of both suites are
classified as MORB with the VGA06
diagrams, and 65% and 75% respec-
tively with the V06a plot. Finally, the
South Andaman ophiolitic basalts do
not showa clear preference for any field
with either the VGA06 or V06a dia-
grams, although Srivastava et al.
(2004) identified them with MORB
with the earlier discrimination
diagrams of Agrawal et al. (2004).
The performance of the diagrams for
ophiolite suites is therefore quite vari-

Table 2 Classification percentages for volcanic rocks from the Mauritius and

Rodrigues ocean islands, Barren Island arc volcano, and Carlsberg and Southwest

Indian Ridges with the Vermeesch (2006a) diagram.

OIB (n) MORB (n) IAB (n) OIB (%) MORB (%) IAB (%)

Fig. no. 3

Mauritius (n = 110) 85 25 0 77.3 22.7 0.00

Rodrigues (n = 10) 6 1 3 60.0 10.0 30.0

Barren Is. (n = 45) 0 0 45 0.00 0.00 100

Carlsberg Ridge (n = 40) 25 15 0 62.5 37.5 0.00

SWIR, F-type (n = 20) 0 20 0 0.00 100 0.00

SWIR, L-type (n = 61) 0 61 0 0.00 100 0.00

SWIR, H-type (n = 47) 3 43 1 6.38 91.5 2.13

SWIR, overall (n = 128) 3 124 1 2.34 96.9 0.78

Table 3 Side-by-side comparison of the number of correctly classified modern oceanic

basalts using the VGA06 (all five), VGA06 (only �d�), and V06a diagrams.

Locality VGA06, all five V06a VGA06, ‘d’ only

Mauritius (OIB) 37.1% (=204 ⁄ 550) 77.3% (=85 ⁄ 110) 85.4% (=94 ⁄ 110)

Rodrigues (OIB) 8.00% (=4 ⁄ 50) 60.0% (=6 ⁄ 10) 40.0% (=4 ⁄ 10)

Barren Is. (IAB) 72.4% (=163 ⁄ 225) 100% (=45 ⁄ 45) 100% (=45 ⁄ 45)

Carlsberg R. (MORB) 22.5% (=45 ⁄ 200) 37.5% (=15 ⁄ 40) 27.5% (=11 ⁄ 40)

SWIR, F-type (MORB) 80.0% (=80 ⁄ 100) 100% (=20 ⁄ 20) 100% (=20 ⁄ 20)

SWIR, L-type (MORB) 80.0% (=244 ⁄ 305) 100% (=61 ⁄ 61) 100% (=61 ⁄ 61)

SWIR, H-type (MORB) 71.5% (=168 ⁄ 235) 91.5% (=43 ⁄ 47) 93.6% (=44 ⁄ 47)

SWIR, MORB overall 76.9% (=492 ⁄ 640) 96.9 (=124 ⁄ 128) 97.6% (=125 ⁄ 128)
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diagram (Vermeesch, 2006a).

2

3

4

5

6

43 45 47 49 51 53 55 57 59 61

SiO2 (wt.%)

N
a 2

O
 +

 K
2O

 (
w

t.%
)

M&K64

I&B71

Mauritius (n = 110)

Rodrigues (n = 10)

Barren Island (n = 45)

Carlsberg Ridge (n = 40)

SWIR (fresh, F-type, n = 20)

SWIR (altered, L-type, n = 61)

SWIR (altered, H-type, n = 47)

Picro-
basalt

Basalt

Basaltic 
andesite

Andesite

Basaltic 
trachyandesite

Trachybasalt

Trachyandesite

Tephrite
Basanite

Fig. 4 TAS diagram (Le Bas et al.,
1986) showing the data for the suites
shown in Figs 2 and 3. M&K64 and
I&B71 are the boundaries between the
sub-alkalic and alkalic fields by Mac-
donald and Katsura (1964) and Irvine
and Baragar (1971).

Terra Nova, Vol 20, No. 3, 229–236 H. C. Sheth • Testing geochemical diagrams for tectonic discrimination

.............................................................................................................................................................

� 2008 Blackwell Publishing Ltd 233



able. It is �very good�, with 50–50%
OIB + CRB or 100% OIB for the
Parh Group, through �fair�, with
60–75%MORB for the Indus-Zangbo
and Eastern Himalayan suites, to
�poor� for the Makran and South And-
aman suites. Thus these diagrams can-
not substitute for trace element and
isotopic analyses, which are required
and of unquestionable value. Similarly
constructed diagrams of only the alter-
ation-resistant major (Ti) and trace
(e.g. Nb, Zr, Y) elements should pro-
vide still better results.

Conclusions and recommendations

Log-ratio transformation and linear
discriminant analysis of large datasets

in the VGA06 and V06a diagrams
resolve quite well the otherwise subtle
major oxide differences between mafic
rocks of various tectonic categories,
here selected from the Indian Ocean
region. The diagrams are quite pow-
erful with OIB, IAB and MORB. The
VGA06 diagrams cannot distinguish
between CRB and OIB in many cases
(though no other existing scheme
does). The CRB category may per-
haps be dropped from future versions.
However, the diagrams have a very
variable performance when applied to
Tethyan and Indian Ocean ophiolite
suites outcropping in Asia, and as
clues to the original tectonic setting of
ophiolites, these remain quite inferior
to trace element and isotopic data.
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Table 5 Classification percentages for the Tethyan and Indian oceanic crustal

ophiolites with the Vermeesch (2006a) diagram.

OIB (n) MORB (n) IAB (n) OIB (%) MORB (%) IAB (%)

Fig. no. 7

Parh group (n = 9) 9 0 0 100 0.00 0.00

Muslim Bagh (n = 21) 2 11 8 9.52 52.4 38.1

Bela (n = 24) 9 13 2 37.5 54.2 8.33

Makran (n = 18) 2 6 10 11.1 33.3 55.5

Indus-Zangbo (n = 26) 4 17 5 15.4 65.4 19.2

E. Himalaya syntaxis (n = 4) 0 3 1 0.00 75.0 25.0

S. Andaman (n = 16) 1 8 7 6.25 50.0 43.7
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Fig. 6 (a–e) Data for Tethyan and Indian oceanic crustal ophiolites on the
discrimination diagrams of Verma et al. (2006). Data sources are: Parh Group ⁄Bibai
volcanics (Mahoney et al., 1998, 2002b); Muslim Bagh (Khan et al., 2007); Band-e-
Zeyarat ⁄Dar Anar (Makran, SE Iran) (Ghazi et al., 2004); Indus-Zangbo and
Eastern Himalayan syntaxis (Mo et al., 1994, 1998, 2005; Shen et al., 2002; Zhang
et al., 2005); South Andaman (Srivastava et al., 2004). Data for Bela ophiolite of
Pakistan (interpreted as formed along a leaky transform, Sarwar, 1992) and several
South Andaman samples (Srivastava et al., 2004) could not be processed because of
lack of P2O5 values.
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Future geochemical schemes might
employ large datasets of only the
alteration-resistant major (Ti) and
trace (e.g. Nb, Zr, Y) elements to
acquire maximum possible power and
utility (e.g. Vermeesch, 2006a,b).
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